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The expense of running computational fluid dynamics (CFD) and computational struc-
tural dynamics (CSD) codes motivates the creation of aeroservoelastic models which can
be interpolated accurately to unmodeled flight conditions. Furthermore, both the analyzed
and interpolated points can be used to design modern control laws for flutter suppression,
gust load alleviation, and ride quality enhancement. One interpolation method involves
taking the weighted average of the assembled aeroservoelastic models themselves. One
shortcoming of such a methodology is the inability to create additional aeroservoelastic
models that correspond to changing the dynamic pressure, since the aerodynamics and
structural dynamics have been combined together. For linear representations, the aero-
dynamics are taken to change linearly with the dynamic pressure. Hence, it should be a
straightforward task to create additional linear aeroservoelastic models that correspond to
changing the dynamic pressure only. The present study examines just such a possibility in
detail. A consistent basis is used for interpolating the aerodynamic models is used to pro-
duce accurate models that can be safely combined with the structural and actuator models
in generating the final aeroservoelastic models. The results presented for the AGARD
445.6 wing demonstrate the efficiency of interpolating the aerodynamic model separately
before integrating into the aeroservoelastic model. The effectiveness of creating a control
law for flutter suppresion for such interpolated points is shown for a subsonic case.

I. Introduction

M
ajor improvements in computational hardware, software, and methodologies over the past couple of
decades have led to the development of sophisticated mathematical models to represent the aeroelastic

response of flight vehicles.1 With the addition of models for the active control of control surfaces, these
aeroelastic models become aeroservoelastic models. While enabling the design of active control systems for
flutter suppression, gust load alleviation, and ride quality enhancement, these aeroservoelastic models can
quickly become prohibitively expensive to create during the initial stages of a preliminary design or the
early stages of a design modification. Efficient creation of such models can be critical to the success of a
development program.

The present work aims to address this through the creation of additional aeroservoelastic models using
interpolation. In particular, the aerodynamic portion of the models will be interpolated prior to assembly
into the integrated aeroservoelastic model. Since the aerodynamic portion of the aeroservoelastic model
scales linearly with the dynamic pressure, it is a straightforward task to create a family of such interpolated
aeroservoelastic models, each corresponding to the same flight condition, but with the dynamic pressure
changed. This allows for a rather straightforward technique to determine the flutter characteristics away
from points that have been analyzed directly.

The aerodynamics will be determined using generalized aerodynamic forces (GAFs) to represent the
unsteady aerodynamic forces computed using the doublet-lattice method (DLM) or a finite volume compu-
tational fluid dynamics (CFD) code employing Euler equations. The accuracy of these type of CFD GAF
models in the transonic regime is demonstrated and relies upon the simple principle of linearization about
the proper nonlinear condition.
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Although not investigated here, the present study motivates the future work of interpolating the structural
dynamics model before assembly into a complete aeroservoelastic model. Such an interpolation/averaging
may correspond to accounting for different mass conditions such as fuel weight, cargo load, or passenger load
conditions.

The next sections detail the development of the aeroservoelastic model which follows the methodology
developed in Ref. 2. Essentially, the finite element method is used to compute the structural modal mass,
stiffnesses, and damping matrices. The unsteady system aerodynamics is computed using either potential
flow via the DLM3, 4 or the Euler equations via CFD.5 State-space equations for the aerodynamics are
developed using either Roger’s Rational Function Approximation (RFA)6 in the reduced frequency domain.

II. Structural Dynamics

The equations for the structural dynamics portion are

[M ]{d̈} + [C]{ḋ} + [K]{d} = {Faero} + {Fact} (1)

where [M ], [C], and [K] are the mass, damping, and stiffness matrices determined using finite elements,
{Faero} gives the aerodynamic forces, and {Fact} gives the actuator forces. Here proportional damping will
be used such that

[C] = α1[M ] + α2[K] (2)

This enables the relevant modal free vibration problem to be written by temporarily ignoring damping as
follows:

[M ]{d̈} + [K]{d} = {0} (3)

The solution to Eq. (3) is simply
{d} = eiωt{φ} (4)

which results in the following generalized eigenvalue problem:

[K]{φ} = ω2[M ]{φ} (5)

Here {φ} is the vector of modal displacements. The system of equations is reduced to modal form by
employing

{d} = [Φ]{ξ(t)} (6)

in Eq. (1) to give
[M̃ ]{ξ̈} + [C̃]{ξ̇} + [K̃]{ξ} = {F̃aero} + {F̃act} (7)

where

[M̃ ] = [Φ]T [M ][Φ] (8)

[C̃] = [Φ]T [C][Φ] (9)

[K̃] = [Φ]T [K][Φ] (10)

{F̃aero} = [Φ]T {Faero} (11)

{F̃act} = [Φ]T {Fact} (12)

Although it is possible to rewrite Eq. (7) in state-space form at this point, it is prudent to first write
expressions for the aerodynamic and actuator forces.

III. Aerodynamics Model

For a single flight condition, the aerodynamic model is generated using the DLM method or CFD. In
each case, the goal is to develop discrete data for the generalized aerodynamic forces as a function of reduced
frequency. Using DLM, such GAF data results directly. However, for the CFD based approach, data for the
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modal aerodynamic forces for a specified modal displacement is first determined in the time domain. This
time domain data is given by qij(t) where

qij(t) = force in the ith mode for unit displacement in the nth mode and q∞ = 1 (13)

The present CFD methodology is based upon exciting one mode at a time using a Gaussian pulse while
holding the other modes fixed. The resulting discrete time domain data is transformed to the frequency
domain using the discrete Fourier transform as follows:

Qij(ωm) =
1

q∞

DFT (F̃aero−i(tn))

DFT (ξj(tn))
=

1

q∞

F̃aero−i(ωm)

Ξj(ωm)
(14)

where ωm represents the mth angular frequency. However, for Roger’s RFA, the GAFs are needed in the
reduced frequency domain where the reduced frequency k for a general angular frequency ω is given by

k =
c

2V∞

ω (15)

or
k =

ω

a
=

ω

2V∞/c
(16)

where c represents the characteristic wing chord and V∞ is the free stream velocity. Here, a = 2V∞/c is the
scale factor relating the frequency domain to the reduced frequency domain. Using the standard formula for
stretching/shrinking the frequency domain which corresponds to shrinking/stretching the time domain, the
GAFs as a function of reduced frequency are given by

Qij(km) =
1

q∞

DFT (F̃aero−i(atn))

DFT (ξj(atn))
(17)

=
1

q∞

F̃aero−i(ωm/a)

Ξj(ωm/a)
(18)

=
1

q∞

F̃aero−i(km)

Ξj(km)
(19)

Once this data has been written in the reduced frequency domain for the complete set of GAFs, it is fit
using Roger’s Rational Function Approximation as follows:

[Q(p)] = [A0] + p[A1] + p2[A2] +

Nl∑

l=1

p [Bl]

p + βl
(20)

where p = ik with i =
√
−1. Here, the [Bl] terms will lead the aerodynamic lag states in the time domain.

The corresponding time domain state-space model is given as follows:

{ż} = [AA]{z} + [BA]





ξ

ξ̇

ξ̈





(21)

{F̃aero} = q∞


[CA]{z} + [DA]





ξ

ξ̇

ξ̈






 (22)

where q∞ is the free stream dynamic pressure, {z} is a vector of aerodynamic lag states and {ξ} is the vector
of modal displacements from before. This equation is written in expanded form as

{ż} = [AA]{z} + [ 0 B1
A 0 ]





ξ

ξ̇

ξ̈





(23)
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{F̃aero} = q∞


[CA]{z} + [ D0

A D1
A D2

A
]





ξ

ξ̇

ξ̈






 (24)

Here the aerodynamic state-space matrices are determined from the terms in Eq. (20) as follows:

[AA] =
2V∞

c
diag

(
−β1,−β2, . . . ,−βNl

)
(25)

[B1
A] =




B̂A 0 0

0
. . . 0

0 0 B̂A


 (26)

[CA] = [ B1 B2 . . . BNl ] (27)

[D0
A] = [A0] (28)

[D1
A] =

c

2V∞

[A1] (29)

[D2
A] =

(
c

2V∞

)2

[A2] (30)

with

{B̂A} =





1

1
...

1





(Nl × 1) (31)

IV. Actuator Models

In addition to the modeling the structure and aerodynamics, a model is included in the aeroservoelastic
state space model for the actuators that regulate the control surface. This is done by modeling the actuators
as a feedback control system with gains [k] and delay constants [a]. Here the nodal actuator forces can be
written as

{Fact} = [k]
(
{δcmd} − {δ} − [a]{δ̇}

)
(32)

For the control surface deflections, the modal expansion is given by

{δ} = [r]{ξ} (33)

where [r] is a subset of [Φ]. The nodal actuator forces are then given by

{Fact} = [k]
(
{δcmd} − [r]{ξ} − [a][r]{ξ̇}

)
(34)

Finally, the modal acutator force is given by

{F̃act} = [r]T {Fact} = [r]T [k]
(
{δcmd} − [r]{ξ} − [a][r]{ξ̇}

)
(35)

V. Aeroservoelastic State Space Model

The assembled aeroservoelastic state-space model is obtained by combining Eqs. (7), (23), (24), and (35)
together to give





ξ̇

ξ̈

ż





=




0 I 0

−M̂−1K̂ −M̂−1Ĉ q∞M̂−1CA

0 B1
A AA








ξ

ξ̇

z





+




0

M̂−1rT k

0


 {δcmd} (36)
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and for acceleration output

{y} =
[
−ΦM̂−1K̂ −ΦM̂−1Ĉ q∞ΦM̂−1CA

]




ξ

ξ̇

z





+
[
ΦM̂−1rT k

]
{δcmd} (37)

Here, [M̂ ], [Ĉ], [K̂] are given by

[
M̂

]
=

[
M̃

]
− q∞

[
D2

A

]
(38)

[
Ĉ

]
=

[
C̃

]
− q∞

[
D1

A

]
+

[
r
]T [

k
][

a
][

r
]

(39)

[
K̂

]
=

[
K̃

]
− q∞

[
D0

A

]
+

[
r
]T [

k
][

r
]

(40)

If instead of acceleration, displacement is requested as the output, the set of linear output equations are
given by

{y} = [ Φ 0 0 ]





ξ

ξ̇

z





(41)

Likewise, if velocity is desired as the output, the linear output equations are given by

{y} = [ 0 Φ 0 ]





ξ

ξ̇

z





(42)

In summary form, the aeroservoelastic (ASE) model is given as

{ẋ} = [Aase]{x} + [Base]{u} (43)

with
{y} = [Case]{x} + [Dase]{u} (44)

where {x} is given by

{x} =





ξ

ξ̇

z





(45)

and {u} is given by
{u} = {δcmd} (46)

VI. Interpolated Aerodynamic Models

The aerodynamic models are to be interpolated. Three possible choices exist for which domain to inter-
polate these models in. These are the time, angular frequency, and reduced frequency domains. However,
the time and angular frequency domains correspond to one another. Hence, there are really only two inde-
pendent choices for the interpolation domain. Nevertheless, both choices can be represented as follows for
interpolated flight condition F as follows. In the time domain, the aerodynamic model for interpolated flight
condition F is

{ż} = [AA]F {z}+ [ 0 B1
A 0 ]F





ξ

ξ̇

ξ̈





(47)
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{F̃aero} = qF


[CA]F {z} + [ D0

A D1
A D2

A
]F





ξ

ξ̇

ξ̈






 (48)

whereas in the reduced frequency domain it is

[Q(pF )]F = [A0]F + pF [A1]F + p2
F [A2]F +

Nl∑

l=1

pF [Bl]F

pF + βl
F

(49)

with

pF = ikF = i

(
c

2VF

)
ωF (50)

A. Interpolation in the time domain

At first glance, it is very tempting to interpolate the time-domain state-space models given by Eqs. (23) and
(24) directly. That is, one would want to produce the following representation for the interpolated flight
condition F as follows:

[AA]F =

N∑

i=1

wi[AA]i (51)

[B1
A]F =

N∑

i=1

wi[B
1
A]i = [B1

A] = constant (52)

[CA]F =

N∑

i=1

wi[CA]i (53)

[D0
A]F =

N∑

i=1

wi[D
0
A]i (54)

[D1
A]F =

N∑

i=1

wi[D
1
A]i (55)

[D2
A]F =

N∑

i=1

wi[D
2
A]i (56)

where wi denote the weights with
N∑

i=1

wi = 1 (57)

This corresponds to the following non-uniform interpolation in the reduced frequency domain:

[A0]F =

N∑

i=1

wi[A
0]i (58)

[A1]F =

N∑

i=1

wi

(
VF

Vi

)
[A1]i (59)

[A2]F =

N∑

i=1

wi

(
VF

Vi

)2

[A2]i (60)
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[Bl]F =

N∑

i=1

wi[B
l]i (61)

βl
F =

N∑

i=1

wi

(
Vi

VF

)
βl

i (62)

At the heart of interpolating directly in the time domain are the following assumptions:

ti = tF = t ωi = ωF ki 6= kF (63)

Although it possible to interpolate directly in the time domain, doing so is not consistent with how the
aerodynamic state-space models were originally generated using Eq. (20). That is, the basis of each of the
aerodynamic models is the curve-fit that was done in the reduced frequency domain. Hence, interpolating
directly in the time domain using Eqs. (51)-(56) is an inconsistent approximation at best.

B. Interpolation in the reduced frequency domain

On the other hand, interpolating the aerodynamic models in the reduced frequency domain before calculating
the corresponding time domain state-space model for flight condition F is self-consistent. The interpolation
in the reduced frequency domain is accomplished using

[A0]F =

N∑

i=1

wi[A
0]i (64)

[A1]F =

N∑

i=1

wi[A
1]i (65)

[A2]F =

N∑

i=1

wi[A
2]i (66)

[Bl]F =

N∑

i=1

wi[B
l]i (67)

βl
F =

N∑

i=1

wiβ
l
i (68)

This corresponds to the following time domain interpolation:

[AA]F =

N∑

i=1

wi

(
VF

Vi

)
[AA]i (69)

[B1
A]F =

N∑

i=1

wi[B
1
A]i = [B1

A] = constant (70)

[CA]F =

N∑

i=1

wi[CA]i (71)

[D0
A]F =

N∑

i=1

wi[D
0
A]i (72)

[D1
A]F =

N∑

i=1

wi

(
Vi

VF

)
[D1

A]i (73)
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[D2
A]F =

N∑

i=1

wi

(
Vi

VF

)2

[D2
A]i (74)

That is, it is necessary to do a non-uniform interpolation in the time-domain in order to achieve a uniform
interpolation in the reduced frequency domain. Of course, the underlying assumptions for interpolating
directly in the reduced frequency domain is that

ki = kF = k ωi =

(
Vi

VF

)
ωF ti =

(
VF

Vi

)
tF (75)

That is, assuming that the reduced frequencies from different flight conditions have the same physical meaning
implies that angular frequencies and time scales for the different flight conditions have different meanings.
An equivalent statement is that Eqs. (69)-(74) correspond to what is needed to put each time domain
aerodynamic model on the same physical time scale for interpolation. Although not shown here, using
Eq. (75) along with Eqs. (21) and (22) written for time scale ti, the results for Eqs. (69)-(74) can be
determined directly by transforming the time scale of each aerodynamic model from ti to tF and summing
and weighting appropriately.

VII. Interpolated Aeroservoelastic Systems

A. Methodology

The aerodynamic models which are interpolated in the reduced frequency domain are then combined with the
structural and actuator models to generate the final aeroservoelastic matrices. In order to be able to assess
the flutter stability characteristics for an unanalyzed point, a family of aeroservoelastic models are generated
in two steps. In the first step, the aerodynamic matrices [AA]F , [B1

A]F , [CA]F , [D0
A]F , [D1

A]F , [D2
A]F are

calculated using an appropriate interpolation scheme. These matrices correspond to an aerodynamic state-
space model for a unit dynamic pressure. In the second step, the actual aeroservoelastic models for a range of
dynamic pressures are generated by scaling the aerodynamic modal forces appropriately as given by Eq. (48).

B. Stability evaluation

The aeroservoelastic state-space models have the form given by Eqs. (43) and (44). For such linear time
invariant systems, the exact solution for the state vector is given by

{x(t)} = e[Aase]t{x(0)} +

∫ t

0

e[Aase](t−τ)[Base]{u(τ)} dτ (76)

Hence, the system characteristics will be determined by the eigenvalues of [Aase]. These eigenvalues are
represented using the following form:

λi = −ζiωi ± iωi

√
1 − ζ2

i (77)

where the angular frequency ωi is given by
ωi = |λi| (78)

and the damping ζi is given by

ζi = −Re(λi)

ωi
= −1

2
gi (79)

Here, gi corresponds to the damping that is typically used in aeroelastic and aeroservoelastic analysis.
The aeroservoelastic system is stable if the real part of the eigenvalues are negative in value leading to

all unforced initial condition responses decaying to zero as time increases. This corresponds to ζi > 0 and
gi < 0. Of course, if ζi < 0 and gi > 0, the system will have an unforced initial condition response that is
unstable and grows unbounded in time. Finally, neutral stability corresponds to ζi = gi = 0.

Even if the base aerodynamic matrices [AA]F , [B1
A]F , [CA]F , [D0

A]F , [D1
A]F , [D2

A]F are held constant, the
various aeroservoelastic matrices that can generated using those matrices with different dynamic pressures
(q∞’s) will have eigenvalues for the various aeroservoelastic modes which vary with the applied dynamic
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pressure. Hence, for the present developments, the base aerodynamic matrices are held constant and q∞
is increased from zero to a value large enough to give an unstable aeroservoelastic system. The dynamic
pressure for the onset of flutter instability is then found as that for neutral stability.

It should be noted that the present methodology is linear in nature. That is the starting models for the
structural dynamics, actuator dynamics, and aerodynamics are all linear. However, it is possible for each of
those models to be a linearization about a nonlniear state. Nevertheless, once the linearization is made, it is
not possible to pick-up any further nonlinearities. Thus, for the present approach is not possible to tell if the
instabilities found would ultimately correspond to pure flutter or a limit cycle oscillation if all the physical
nonlinearities were properly taken into account. In all of the numerical examples, the onset of instabilities
will be referred to as the onset of flutter.

VIII. Control Law Design

The plant model described above is combined with a linear quadratic Guassian (LQG) controller. An
LQG design consists of a linear quadratic regulator (LQR) combined with a Kalman filter (KF) observer.
Here, the Kalman filter is designed with loop recovery.

A. Plant State-Space Model

The plant ASE state-space model is given in the standard form for linear time-invariant (LTI) systems with
both process and measurement noise as follows:

{ẋ} = [Aase]{x} + [Base]{u} + {W} (80)

{y} = [Case]{x} + [Dase]{u} + {V } (81)

where the n states are contained in the vector {x}, the m inputs are contained in the vector {u}, the l
measured outputs are contained in the vector {y} and the process and measurement noises are contained in
the vectors {W} and {V }, respectively. Here the process and measurement noises are taken to be uncorrelated
white noise.

B. LQR Model

The objective function to be minimized for the LQR problem for the LTI system without system or mea-
surement noise is

J(t, tf ) =

∫ tf

t

(
{x(τ)}T [Q(τ)]{x(τ)} + {u(τ)}T [R(τ)]{u(τ)}

)
dτ (82)

where [Q(τ)] and [R(τ)] are both positive definite. For the present developments, tf is taken to be ∞ and
the [Q] and [R] matrices are taken to be constant and to have the following form:

[Q] = qx[I] (83)

[R] = qu[I] (84)

Although not as general as possible, the weighting between the error and the control power can be specified
by choosing scalar parameters qx and qu appropriately.

The minimization is to be obtained with full state feedback

{u} = −[Kase]{x} (85)

where [Kase] represents a matrix of optimal gains that minimize J . Here for the purposes of this problem
statement, all the states are assumed to be available. Later, these states will be replaced by the estimated
states from the estimator. As shown in Refs. 7 and 8, it is a straightforward task to show that the optimal
gain is given by

[Kase] = [R]−1[Base]
T [P ] (86)

where [P ] is the solution to the algebraic Riccati equation, given by

[Aase]
T [P ] + [P ][Aase] + [Q] − [P ][Base][R]−1[Base]

T [P ] = [0] (87)
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As noted previously, the states of the system are to be estimated; thus, the feedback vector is given by:

{u} = −[Kase]{x̂} (88)

where {x̂} represents the estimated states. Hence, the closed-loop plant model becomes:

{ẋ} = [Aase]{x} − [Base][Kase]{x̂} + {W} (89)

{y} = [Case]{x} − [Dase][Kase]{x̂} + {V } (90)

C. Kalman Filter/Estimator Design

The Kalman filter design problem is also well known. See for example Ref. 9. Let E(·) represent the expected
value, and assume that {W} and {V } are unbiased, independent white noise, and that the n + l channels
are uncorrelated. This gives:

E({W (t1)}{W (t2)}T ) = [M ]δ(t1 − t2) (91)

E({V (t1)}{V (t2)}T ) = [N ]δ(t1 − t2) (92)

E({W (t)}{V (t)}T ) = [0] (93)

where [M ] and [N ] are diagonal matrices representing the process noise covariance and the measurement noise
covariance, respectively, and δ is the Dirac delta generalized function. Later on, the [M ] and [N ] matrices will
become design parameters used to accomplish loop recovery. Although [M ] was used previously to represent
the mass matrix, it should be clear from the context in the following equations that [M ] here denotes the
process noise covariance.

The state estimator has the following state-space model:

{ ˙̂x} = [Aase]{x̂} + [Base]{u} − [Lase]
T ({ŷ} − {y}) (94)

{ŷ} = [Case]{x̂} + [Dase]{u} (95)

where [Lase] represents the gain of the Kalman filter. Let the estimation error be represented as {e} with

{e} = {x} − {x̂} (96)

This error will evolve according to the following equation:

{ė} =
[
[Aase] − [Lase]

T [Case]
]
{e} + {W} − [Lase]

T {V } (97)

The quantity to be minimized is the scalar cost function

J = E({e}T [Ŵ ]{e}) (98)

where [Ŵ ] is a symmetric positive definite weighting matrix. The symmetric error covariance matrix is given
by

[P ] = E({e}{e}T ) (99)

It can be shown through straightforward manipulations that the optimal gain [Lase] is given by

[Lase] = [N ]−1[Case][P ] (100)

with [P ] satisfying the following algebraic Riccati equation:

[Aase][P ] + [P ][Aase]
T + [M ] − [P ][Case]

T [N ]−1[Case][P ] = [0] (101)

The full-state feedback optimal quadratic designs have attractive robustness properties that may dis-
appear with the introduction of a state estimator.7 These robustness properties may be recovered for a
minimum phase plant model using the loop recovery technique first presented in Ref. 10 where [M ] and
[N ] are relaxed to be design parameters. Specifically in the present developments, the following choices are
made:

[M ] = qw[Base][Base]
T (102)

[N ] = qv[I] (103)
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where the scalars qw and qv are chosen to give an appropriate weighting between the psuedo-process and
measurement noises, respectively.

Applying the estimated state feedback (Eq. (88)) to the estimator state-space equations given by Eqs. (94)
and (95) and employing Eqs. (80) and (81) with the noise terms neglected gives the following controller state-
space system:

{ ˙̂x} =
(
[Aase] − [Base][Kase] − [Lase]

T [Case] + [Lase]
T [Dase][Kase]

)
{x̂} + [Lase]

T {y} (104)

{u} = [Kase]{x̂} (105)

Hence the controller state-space matrices are

[Ac] = [Aase] − [Base][Kase] − [Lase]
T [Case] + [Lase]

T [Dase][Kase] (106)

[Bc] = [Lase]
T (107)

[Cc] = [Kase] (108)

[Dc] = [0] (109)

Note that [Cc] is equal to positive [Kase], because the controller is to be applied to the plant model as
negative feedback.

D. Closed Loop System

The controller state-space model is combined as negative feedback into the plant state-space model. The
closed-loop system is governed by the following set of equations:

{
ẋ
˙̂x

}
=

[
Aase −BaseKase

LT
aseCase Aase − BaseKase − LT

aseCase

]{
x

x̂

}
+

[
Base

LT
aseDase

]
{∆cmd} (110)

and

{y} =
[

Case −DaseKase

]{
x

x̂

}
+ [Dase]{∆cmd} (111)

where {∆cmd} is the additional command input. Using the definition of the error given by Eq. (96), these
can be shown to be

{
ẋ

ė

}
=

[
Aase − BaseKase BaseKase

0 Aase − LT
aseCase

]{
x

e

}
+

[
Base

Base − LT
aseDase

]
{∆cmd} (112)

and

{y} =
[

Case − DaseKase DaseKase

]{
x

e

}
+ [Dase]{∆cmd} (113)

IX. AGARD 445.6 Wing Example

The example problem selected for this development is the AGARD 445.6 configuration which has served
as a standard aeroelastic benchmark problem for a number of decades.11, 12 The wing has a root chord of
1.833 ft, a tip chord of 1.208 ft, a semi-span of 2.5 ft, and an aft sweep angle of 45◦ at the quarter-chord
line. Here the material properties are chosen to match the weakened configuration described in Refs. 11,12.
Two different conditions will be used for the wing root. In the first case, the wing root will be taken to
be fixed and the aeroelastic stablity is evaluated for which experimental data is available from NASA. In
the second case, the wing will be made aeroservoelastic by taking the wing root to be rigid, but able to be
rotated about its quarter chord point. In the interest of brevity, no interpolation results will be presented
for the fixed root case. Rather, the accuracy of the base aeroservoelastic representation will be assessed for
that case. For the rotating root case, both interpolation and closed loop results will be generated.

It is noted here that the underlying structural models for the two cases are slightly different. For
the fixed-root aeroelastic model, the underlying modal structural dynamics have been provided directly
by NASA. These modal structural dynamics are specified directly in terms of modal frequencies, masses
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and mode shapes. No structural damping is included. Because a finite element model corresponding to
that structural dynamic specification was not made available to the present reserach program, a new finite
element model is generated for the rotating rigid root case. The structural mode shapes for this model
with the wing root temporarily fixed matched the modal plots available for the aeroelastic AGARD 445.6
configuration. Furthermore, the corresponding modal frequencies agreed fairly well with the previous values
provided directly by NASA. However, the new finite element values for the modal frequencies are slightly
higher, indicating that the new finite element model is slightly too stiff. Nevertheless, the finite element
model is taken to be adequate for demonstration purposes, as creating a better finite element model is not
feasible, as the actual wing model tested by NASA was constructed from maghony wood (an orthotropic
material) and had holes drilled in it and filled with epoxy in order to lower its flutter speed. Having achieved
an acceptable finite element model, the boundary conditions are changed to allow the wing root to rotate as
a rigid body about its quarter-chord point.

A. Fixed-root aeroelastic case

In order to compare to the experimental flight conditions, it is convenient to compute a mass ratio, µ, which
here is defined as

µ =
m̄

ρV̄
(114)

where m̄ is the mass of the wing, ρ is the free stream fluid density, and V̄ is the volume associated with the
wing. Here the volume is taken as that of a conical frustrum having a root diameter equal to the wing root
chord and and a tip diameter equal to the wing tip chord. Using the measurements of the AGARD wing
(root chord of 1.833 ft and tip chord of 1.208 ft) gives V̄ = 4.6034 cubic ft. The mass of the wing model
used in the present calculations is m̄ = 0.1284 slugs.

After µ is known, it is then possible to calculate the flutter speed index, U , given by

U =
V

bs ωα µ1/2
(115)

where V is the free stream velocity, bs is the wing root semi-chord, and ωα is the natural frequency of the
first torsional mode of the wing. Here, ωα is calculated to be 250.0896 rad/s.

Shown in Fig. 1 are both DLM-based and CFD-based ROM data and the experimental data from Ref. 12
for the flutter speed index. Also shown in Fig. 1 is a single data point computed using the aeroelastic
capability of CFL3D-AE. First of all, it is evident that the CFD-based and DLM-based results compare
well for subsonic Mach numbers. Furthermore, both sets of computational results agree reasonably well
with experimental measurements for the subsonic flight conditions. Although both sets of computational
results demonstrate the existence of a transonic dip, neither dip prediction agrees exactly with that coming
from the experimental data. Of course, DLM-based aerodynamics are not expected to perform well in the
transonic regime due to the presence of shocks in the flow over the wing. Recall, shocks are not captured
by a DLM-based solution. Hence, the underprediction of the transonic dip by the DLM approach is not
unexpected. The CFD-based results are better than those DLM-based results, because the shocks do appear
in the Euler flow solution. However, these inviscid Euler flow solution results overpredict the strength of the
shocks, as the boundary layer effects are not captured. This explains the overprediction of the magnitude
of the transonic dip. This is not the only problem with the aeroservoelastic models generated using linear
GAFs computed from a CFD-based approach. The motion of the shocks that occurs during the modal
Guassian pulse excitations used for computing the GAFs does not correspond exactly to what would occur
in the oscillations leading to flutter instability. It is felt that this is a small issue.

In order to verify that this is indeed a small issue, an aeroelastic solution is computed directly using
CFL3D-AE, the aeroelastic version of CFL3D. The structural modes are splined to the CFD mesh and
excited with initial velocities. CFL3D-AE then computes the initial condition response using the structural
dynamics modal information along with computing the actual Euler (inviscid) flow solution at each time
step. The resulting structural modal motions are then monitored to see if they grew, decayed, or remained
constant. Recall that the aeroelastic modes will not correspond exactly to the structural modes, as they
involve the combination of the aerodynamics and structural dynamics. That is, a structural mechanics mode
may and probably does participate in a number of aeroelastic modes. As should be obvious, flutter onset
corresponds to the case when one of the aeroelastic modes becomes neutrally stable (neither growing or
decaying) for the chosen dynamic pressure.
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Figure 1. Flutter speed index as a function of Mach number for the aeroelastic fixed-root version of the
AGARD 445.6 wing.
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In order to see clearly if this is occuring, one must march the aeroelastic solution in the time domain
until all of the stable aeroelastic modes along with the initial transients have decayed out. The generalized
deflection of the structural modes were plotted and it is taken to be sufficient to check the motion of the first
structural mechanics mode over a small number of cycles. Even though this is an approximation designed to
limit the computational resources required, it is still computationally very expensive to determine the onset
of flutter in this manner (multiple dynamic pressures must be investigated for a single Mach and velocity
combination). Hence, only a single point, M =0.95, V = 1060.6 ft/s was investigated. Furthermore, the
flutter point was only determined to within the nearest 2.5 psf of dynamic pressure.

Shown in Figs. 2–4 are time histories of the generalized structural modal deflection at several dynamic
pressures corresponding to low (30.0 psf), medium (47.5 psf), and high (85.0) values. Here, the modal
results for 30.0 psf are clearly stable, while those at 85.0 psf are clearly unstable. Similar types of results
were computed at other dynamic pressures in order to compute the flutter onset point. The flutter onset
point is determined to be approximately 47.5 psf of dynamic pressure for a Mach number of 0.95 with a
velocity of 1060.6 ft/s. Those nearly neutrally stable oscillations are plotted in Fig. 3. Restated as a flutter
speed index, the flutter onset point is approximately U = 0.2546. This result has also been plotted in Fig. 1
and demonstrates a flutter speed index in the transonic regime comparable to the previous CFD-GAF based
state-space model results. Both sets of these CFD-based results overpredict the strength of the transonic
dip, as each came from an inviscid Euler flow solution. Hence, the accuracy of the linearized GAF approach
has been demonstrated in that most of its overprediction of the transonic dip arises from the use of an Euler
flow solution and not from linearization.
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Figure 2. Time history of structural modal motion for M = 0.95, V = 1060.6 ft/s, and q = 30.0 psf (U =
0.2024).
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Figure 3. Time history of structural modal motion for M =0.95, V = 1060.6 ft/s, and q =47.5 psf (U = 0.2546).
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Figure 4. Time history of structural modal motion for M =0.95, V = 1060.6 ft/s, and q = 85.0 psf (U =
0.3406).
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B. Rotating rigid root aeroservoelastic case

Having demonstrated the viability of the present linear state-space modeling approach for assessing the
flutter of the fixed-root aeroelastic system, the AGARD 445.6 wing is now made aeroservoelastic by allowing
the wing root to rotate rigidly about its quarter-chord point. A relatively high stiffness acutator is added
to the wing in order to prevent free movement of the wing root. The flutter conditions for this version of
the AGARD 445.6 wing are predicted only for the CFD-based linear GAF approach. In all cases, the paths
between different flight conditions are taken to correspond to a constant speed of sound of 1081.55 ft/s. That
is, the linear relationship between Mach number and free stream velocity is preserved (which would not be
the case if the free stream temperature changed over the flight path.)

1. Interpolation and subsequent closed loop model for a subsonic case

First, consider a set of subsonic flight conditions with M = 0.5 and V =540.78 ft/s with various dynamic
pressures. The velocity is held fixed, while the change in dynamic pressure is taken to result from a change
in free stream density. For simplicity, no lag states are used in the RFA representation of the aerodynamic
GAFs. Shown in Fig. 5 are plots of the damping and frequency versus dynamic pressure for the first four
aeroservoelastic modes computed directly using CFD-based GAFs computed at that Mach and velocity.
The flutter point is identified as q∞ = 155.9 psf which corresponds to a flutter speed index of U = 0.4613.
The flutter point corresponds to the classic case of convergent bending-torsion flutter. Flutter onset is also
calculated for M = 0.338 with V = 365.56 ft/s and M = 0.678 with V = 733.29 ft/s. The results are
presented in Table 1 and Fig. 6.
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Figure 5. Damping and frequency for the first four aeroservoelastic modes for the rotating root AGARD 445.6
wing at a flight condition of M = 0.5 and V = 540.78 ft/s.
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Table 1. Dynamic pressure and flutter speed index for flutter onset for subsonic flight conditions for the
rotating rigid root case. A constant speed of sound of 1081.55 ft/s is used for all flight conditions.

Flight Condition Mach Velocity (ft/s) Flutter Dynamic Pressure (psf) Flutter Speed Index Flutter Speed Index

Interpolation Error

Direct Evaluation:

1 0.338 365.56 191.6 0.5114 –

2 0.5 540.78 155.9 0.4613 –

3 0.678 733.29 140.8 0.4384 –

Interpolation:

2B∗ 0.5 540.78 154.4 0.4591 -0.48%

2C+ 0.5 540.78 – 0.4766 3.32%

∗Produced using linear interpolation of the base aerodynamic models from flight conditions 1 & 3
+Produced using linear interpolation of the final flutter results from flight conditions 1 & 3

The interpolated aeroservoelastic models corresponding to M = 0.5 and V = 540.78 ft/s are generated
using a base aerodynamic model which is produced using linear interpolation. That is, the aerodynamic
models for the M = 0.338 with V = 365.56 ft/s and M = 0.678 with V = 733.29 ft/s cases with q∞ = 1
psf are used to determine that for the M = 0.5, V = 540.78 ft/s, and q∞ = 1 psf base. The free stream
dynamic pressure q∞ is then varied to find the onset of flutter. The flutter dynamic pressure is found to be
q∞ = 154.4 psf which equates to a flutter speed index of U = 0.4591. Hence, excellent results have been
found for the flutter onset point using a linear interpolation of the base aerodynamic models. Of course,
if only the flutter speed index is of interest, it is possible to just curve fit the flutter speed index directly.
Doing so in a linear fashion between the M = 0.338, V = 365.56 ft/s and M = 0.678, V = 733.29 ft/s
results produces a flutter speed index of U = 0.4766, an acceptable approximation, but not as accurate as
that computed using aeroservoelastic models resulting from a linear interpolation of the base aerodynamic
models. Hence, an interpolation of higher order than linear (and requiring additional input points) is needed
to produce results of equivalent accuracy. Both sets of interpolation results are also presented in Table 1
and Fig. 6.

A LQG controller is designed for the M = 0.5 and V = 540.78 ft/s case using the aeroservoelastic models
produced using linear interpolation of the base aerodynamic models. The dynamic pressure taken for the
design point is taken to be at a free stream dynamic pressure of 231.6 psf which is 150% of the flutter point
for the interpolated models. Shown in Fig. 7 are the damping and frequency results as a function of applied
dynamic pressure for the closed loop system. Note that the results are separated into the various modes by a
simple scheme which sorts the frequencies from lowest to highest at each dynamic pressure separately. Hence,
when the frequency lines of the various modes cross, the simple scheme does not properly capture which
mode is which. However, the plots in Fig. 7 remain discernible to human inspection. For very small dynamic
pressures, the closed loop system is unstable. However, once the free stream dynamic pressure is above 40
psf, no flutter occurs. This result is not entirely surprising, considering the limitations of a single control
deflection that rotates the entire wing root. Hence, in order to use such a controller for the rotating rigid
root AGARD 445.6, one would need to wait to turn the controller on until sufficient free stream dynamic
pressure had been achieved.

2. Interpolation for a transonic case

Now consider the transonic flight conditions with M = 0.9, 0.93, 0.95, 0.96, and 0.98 with corresponding
velocities for a fixed speed of sound of 1081.55 ft/s. Cubic interpolation will be used to generate the base
(q∞ = 1 psf) aerodynamic model for M = 0.95 from the other four Mach numbers. In order to assess whether
cubic interpolation will be enough and learn more about what type of behavior occurs in the transonic regime,
the raw CFD GAF data (without a RFA fit) will first be plotted in the reduced frequency domain for the
first five modes. Then, RFA fits will be generated for M = 0.9, 0.93, 0.96, and 0.98. These RFA fits will
then be interpolated in the reduced frequency domain in a cubic fashion to produce results for M = 0.95.
Finally, the flutter characteristics of the interpolated models at M = 0.95 will be determined.

Shown in Fig. 8 are the in-phase results for the linear CFD GAFs for the M = 0.9, 0.93, 0.96, and
0.98, while the corresponding out-of-phase results are shown in Fig. 9. Also shown in these two figures are
results for M = 0.95 computed directly using CFL3D-AE and from a cubic interpolation of the other CFD
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Figure 6. Flutter speed index for AGARD 445.6 with a rotating rigid root at subsonic flight conditions
evaluated directly and with interpolation.
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Figure 7. Damping and frequency for the aeroservoelastic modes of the closed loop AGARD 445.6 wing with
a rotating rigid root. The other parts of the flight condition consist of a Mach number of 0.5 and a free stream
velocity of 540.78 ft/s.
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GAFs. Note these results are produced without consideration to RFA fits. However, it should be noted that
these show the best results that could possibly be achieved with a series of RFA fits. Note that there is
a wide variation in how the GAFs vary with reduced frequencies for the various Mach numbers. However,
performing cubic interpolation of the GAF results with a cubic Lagrange polynomial generated for M = 0.9,
0.93, 0.96, and 0.98, appears to give good results for the M = 0.95 case.

Figure 8. In-phase portions of the GAFs for the transonic flight conditions corresponding to M = 0.9, 0.93,
0.96, and 0.98. Results for M = 0.95 are shown for actual evaluation at that condition and that coming from a
cubic interpolation of the CFD GAF results for input Machs of M = 0.9, 0.93, 0.96, and 0.98. Here the speed
of sound is taken to be constant at 1081.55 ft/s and the dynamic pressure is 1.0 psf.

Shown in Figs. 10 and 11 are plots of the GAFs as a function of Mach number for reduced frequencies
of k = 0.1 and k = 0.15, respectively. The raw data is plotted, as well as curves for the cubic Lagrange
polynomials that pass throu the “input” CFD GAF data at M = 0.9, 0.93, 0.96, and 0.98. Also shown are the
interpolated results for M = 0.95 and the corresponding results for M = 0.95 obtained using CFD directly.
Note that the interpolations presented in these two figures correspond to interpolation of the raw CFD GAF
data and not the yet to be determined RFA fits of that data. Here the CFD data is interpolated for each
reduced frequency separately which is analogous to fitting the RFA coefficients as shown in Eqs. (64)-(68).
It appears that a cubic fit captures most of the transonic behavior of the GAFs for each individual reduced
frequency. Although the cubic interpolation looks different at each reduced frequency, the same weighting
factors are to produce the cubic fits for each reduced frequency. It is just that the values being multiplied
by the individual weighting factors change for each reduced frequency.

The final results for the RFA fits for the M = 0.95, V = 1027.47 ft/s, q = 1.0 psf case are shown in
Fig. 12. The RFA fits produced using CFD directly are plotted as symbols and the cubic interpolation for
the RFA fits are shown as lines in Fig. 12.

Having demonstrated the accuracy of a cubic fit to the base transonic aerodynamics (q =1.0 psf) for a
constant speed of sound (10811.55 ft/s), results will now be presented for the onset of flutter. Shown in
Table 2 and Fig. 13 are results for the transonic Mach numbers under consideration. For M = 0.95, both
the direct evaluation and interpolation results are shown. The final results created using the interpolated
aerodynamics are accurate.
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Figure 9. Out-of-phase portions of the GAFs for the transonic flight conditions corresponding to M = 0.9,
0.93, 0.96, and 0.98. Results for M =0.95 are shown for actual evaluation at that condition and that coming
from a cubic interpolation of the CFD GAF results for input Machs of M = 0.9, 0.93, 0.96, and 0.98. Here
the speed of sound is taken to be constant at 1081.55 ft/s and the dynamic pressure is 1.0 psf.

Figure 10. CFD-based GAFs as a function of Mach number for a reduced frequency of k = 0.1. Here the speed
of sound is taken to be constant at 1081.55 ft/s and the dynamic pressure is 1.0 psf.
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Figure 11. CFD-based GAFs as a function of Mach number for a reduced frequency of k = 0.15. Here the
speed of sound is taken to be constant at 1081.55 ft/s and the dynamic pressure is 1.0 psf.

Table 2. Dynamic pressure and flutter speed index for flutter onset for transonic flight conditions for the
rotating rigid root case.

Flight Condition Mach Velocity (ft/s) Flutter Dynamic Pressure (psf) Flutter Speed Index

4 0.90 973.40 83.1 0.3368

5 0.93 1005.84 71.6 0.3126

6 0.96 1038.29 59.2 0.2843

7 0.98 1059.92 57.7 0.2806

F 0.95 1027.47 62.4 0.2918

F∗ 0.95 1027.47 62.7 0.2925
∗Produced using cubic interpolation of the base aerodynamic models from flight conditions 4, 5, 6, and 7
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Figure 12. RFA fits for the M =0.95 flight condition produced from direct CFD evaluation and from cubic
interpolation of the RFA fits for M =0.9, 0.93, 0.96, and 0.98. Here the speed of sound is taken to be constant
at 1081.55 ft/s and the dynamic pressure is 1.0 psf.
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Figure 13. Flutter speed index for AGARD 445.6 with a rotating rigid root at transonic flight conditions
evaluated directly and with interpolation. Here the speed of sound is taken as constant at 1081.55 ft/s.
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X. Summary

A methodology for creating aeroservoelastic models based on interpolated aerodynamic models has been
presented. Using such a methodology it is possible to vary the dynamic pressure while holding the other flight
conditions constant to generate a family of aeroservoelastic models. Such a family of models can be used to
characterize the flutter boundary of a vehicle, a task which is not possible when the final aeroservoelastic
models are interpolated themselves. Furthermore, it is possible to generate a LQG controller to improve the
flutter characteristics of the resulting aeroservoelastic models.

It should be noted that several domains exist for where to do the interpolation of the aerodynamic models.
Three such choices are the time domain, the angular frequency domain, and the reduced frequency domain.
Interpolating in the time domain or the angular frequency domains is equivalent. For the present approach
the raw DLM or CFD data for the generalized aerodynamic forces is fit using Roger’s RFA in the reduced
frequency domain. Hence to be consistent when interpolating the aerodynamic models between different
flight conditions, the models must be interpolated in the reduced frequency domain. Although not presented
here, interpolating aerodynamic models uniformly in the time domain leads to highly inaccurate results. On
the other hand, interpolating such models in the reduced frequency domain has been shown to be accurate
using a realistic example. It has been shown in the present developments that interpolating uniformly in the
reduced frequency domain corresponds to a non-uniform interpolation in the time domain.
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