Downloaded by NASA LANGLEY RESEARCH CENTRE on February 3, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.A33067

JOURNAL OF SPACECRAFT AND ROCKETS

Quantification of Margins and Uncertainties
for Integrated Spacecraft Systems Models

Thomas K. West IV# and Serhat Hosder?
Missouri University of Science and Technology, Rolla, Missouri 65409

and

Tyler Winter#
M4 Engineering, Inc., Long Beach, California 90807
DOI: 10.2514/1.A33067

The objective of this study was to introduce an efficient and accurate approach to the quantification of margins and
uncertainties for integrated spacecraft systems models. In this study, stochastic expansions, based on nonintrusive
polynomial chaos, were used for efficient representation of uncertainty both in design metrics and associated
performance limits of a system. Additionally, procedures were outlined for analyzing systems that contain different
uncertainty types between the performance metrics and performance limits. These methodologies were demonstrated
on two model problems, each possessing mixed (epistemic and aleatory) uncertainty, which was propagated through
the models using second-order probability. The first was a complex system model of highly nonlinear analytical
functions. The second was a coupled multisystem, physics-based model for spacecraft reentry. The performance
metrics consisted of two systems used to determine the maximum g load, the necessary bank angle correction, and
maximum convective heat load along a reentry trajectory. Overall, the methodologies and examples of this work have
detailed an efficient approach for measuring the reliability of complex spacecraft systems models, as well as the
importance of quantifying margins and uncertainties for the design of reliable systems.

Nomenclature
I = mass fraction of species i
F = performance metric
FL,FU = lower and upper performance limit
h = enthalpy or altitude, km
hp = enthalpy of diffusion, J/kg
hy = total enthalpy, J/kg
h?( = heat of formation, J/k mol
Le = Lewis number
Miw, Myp = lower and upper performance gate margin
m = mass, kg
N = number of samples
N, = number of terms in a total-order polynomial chaos
expansion
n = number of random dimensions
P = pressure, Pa
Pr = Prandtl number
p = order of polynomial expansion
g = heat flux, W/cm?
r = orbital radius, km
S = reference area, m?
s = downrange distance, km
T = temperature, K
U = velocity, m/s
Ur = performance metric uncertainty
Upr, Upy = lower and upper performance limit uncertainty
Uiw,Uyp = lower and upper performance gate uncertainty
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deterministic coefficient in the polynomial chaos
expansion

generic uncertain function

confidence level

flight-path angle, deg

wall emissivity

longitude, deg

= dynamic viscosity, kg/m - s

standard input random variable

density, kg/m?3

= Stefan-Boltzmann constant, 5.67 X 1078 W/
m2-K*, or bank angle, deg

= latitude, deg

= random basis function or heading angle, deg

= planetary body rotation rate, rad/s
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Subscripts

conduction

diffusion

boundary-layer edge condition
radiation

wall condition

= freestream condition

g8 ¥ an
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1. Introduction

N COMPLEX aerospace engineering problems, reliability is akey

component of the design process. Complex spacecraft systems
and models may possess a significant amount of nondeterministic
parameters and mission critical performance metrics that are subject
to uncertainty. Quantifying this uncertainty, in not only designs, but
also in performance limits, is critical in understanding and
quantifying the reliability of a system. Because of the importance of
such systems and associated models, there is a strong need for a
simple, yet efficient and accurate approach to measure the confidence
and reliability of complex spacecraft systems.

Quantification of margins and uncertainties (QMU) is a
methodology developed to facilitate analysis and communication
of confidence for certification of complex systems. This
methodology is similar to the capability analysis reported in the
past literature [1]. QMU is performed with quantified uncertainty and
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margin metrics obtained for various system responses and
performance parameters [2]. In recent years, a number of studies
were reported on the theoretical development and the application of
the QMU concept. The description of the key elements of a QMU
framework was presented by Sharp and Wood-Schultz [2], who used
the QMU methodology for the certification of nuclear weapons.
Eardley [3] described QMU as a formalism dealing with the
reliability of complex technical systems and the confidence, which
can be placed in estimates of reliability. They also investigated the
main components (performance gates, margins, and uncertainties) of
QMU methodology. Pilch et al. [4] presented the main ideas
underlying QMU, who also emphasized the need to separate aleatory
and epistemic uncertainty in QMU. Helton [5] presented a
comprehensive study on the QMU, which included a detailed
analysis of the concept with different representations of uncertainty.
Romero [6] discussed the issues and needs in QMU of complex
coupled systems. Pepin et al. [7] presented a practical QMU metric
for the certification of complex systems, which allowed uncertainty
both on the operating region and the performance requirement and
was not restrictive to a probabilistic definition of the uncertainty. A
QMU approach was used for the characterization of the operational
limits of the supersonic combustion engine of a hypersonic
airbreathing vehicle by Iaccarino et al. [8]. A study by Lucas etal. [9]
used the QMU methodology to study the reliability of a ring
structure. Swiler et al. [10] studied various approaches to characterize
epistemic uncertainty in the calculation of margins. Although
significant work has been done in the area of QMU and its
methodologies, further development of new methods is important for
efficient, accurate, and comprehensive QMU for integrated space-
craft systems models.

The objectives of this work are twofold. The first objective is to
demonstrate the use of stochastic response surfaces based on
nonintrusive polynomial chaos (NIPC) for efficient quantification of
uncertainty in system performance metrics, as well as performance
boundaries. Previous work by Hosder and Bettis [11] and Bettis et al.
[12], as well as Hosder et al. [13,14], in the area of using stochastic
expansions based on NIPC as a means of efficient uncertainty
quantification (UQ) has been extensively investigated. These works
included studies involving the propagation of both aleatory (inherent)
and epistemic uncertainties through a variety of stochastic model
problems. In general, polynomial chaos methods are based on a
spectral representation of the uncertainty and can be significantly
more efficient than traditional Monte Carlo simulations. An
additional advantage of NIPC methods is that the deterministic
model, such as a computational fluid dynamics (CFD) code, is treated
as a black box because no intrusive changes to the model are needed
to perform UQ analyses. The theory behind the polynomial chaos
methodologies are both well defined and well understood [15],
making it a suitable and reliable method for UQ of complex
spacecraft simulations and as a key component in an accurate and
efficient QMU framework.

The second objective of this work is to define procedures to
calculate the margin and uncertainty metrics for a QMU analysis of
systems containing multiple types of uncertainty representation
between the design and performance limits. In many engineering
applications, uncertainty in the design condition may be different
than the representation of the performance boundaries. Representa-
tion may be a pure probabilistic representation, an interval-based
representation, or a combination of the two (i.e., mixed uncertainty).
There may also be instances when no uncertainty exists in
performance limits. This may be typical when trying to meet some
specific design criteria. The goal is to outline how measures can be
made between these different uncertainty representations to provide
an accurate estimation of the reliability of the system and/or
performance metric.

Methodologies developed in this study are demonstrated on two
stochastic model problems. The first is an analytical model consisting
of highly nonlinear functions typically used in optimization testing.
This is to demonstrate the capability of NIPC when applied to
complex problems and the use of stochastic response surfaces to
represent uncertainty, as well as to demonstrate their use in a QMU

analysis. The analytical model or system has two performance
metrics or outputs, each bounded by performance limits with a
different uncertainty representation to demonstrate the aforemen-
tioned second objective of the current work. The second model
problem is a multisystem, multiphysics spacecraft reentry model,
which consists of coupled reentry dynamics and heat load models to
characterize design critical measurements of a spacecraft during
reentry. These include the maximum g load, the required bank angle
correction, and the maximum heat load along the reentry trajectory.
This model is intended to demonstrate the methodologies outlined in
this work on a practical aerospace engineering application in the area
of spacecraft systems.

The following section describes the methodology behind
stochastic response surfaces using polynomial chaos expansions
and their use as a means of accurate and efficient uncertainty
quantification. Section III briefly describes the different types of
uncertainty (aleatory and epistemic), as well as a short description of
the process for propagating mixed uncertainty through a model.
Section IV describes the formulation of the QMU methodologies and
how the stochastic response surfaces can be incorporated into the
analysis of systems with multiple types of uncertainty representation.
The QMU methodologies are then demonstrated on a stochastic
model consisting of highly nonlinear analytical functions (Sec. V)
and a stochastic, multiphysics spacecraft reentry model (Sec. VI).
These sections contain detailed information regarding the models, the
stochastic problems, and the results of detailed QMU analyses.
Lastly, conclusions summarizing the results are given to tie up the
findings of this work.

II. Uncertainty Quantification Methodology

Many high-fidelity numerical models are computationally
demanding. When performing UQ, traditional sampling methods
may be problematic because large numbers of evaluations of the
deterministic model are typically required for accurate results. In this
study, a surrogate modeling approach based on polynomial chaos
theory is used for improved computational efficiency. This section
details the formulation of the surrogate models for use in accurate and
efficient UQ.
has been used as a means of UQ over traditional methods, such as
Monte Carlo, for its computational efficiency. Polynomial chaos is a
surrogate modeling technique based on the spectral representation of
the uncertainty. An important aspect of spectral representations is the
decomposition of a response value or random function a* into
separable deterministic and stochastic components, as shown in
Eg. (1):

,
(X&)~ ) a;(x)¥;(E) (1)
i=0

Here, ; is the deterministic component and ¥, is the random variable
basis functions corresponding to the ith mode; a* is assumed to be a
function of the vector x of independent random variables and the
n-dimensional standard random variable vector €. Note that this series
is, by definition, an infinite series. However, in practice, it is truncated
and a discrete sum is taken over a number of output modes [15]. To
form a complete basis or for a total-order expansion, N, terms are
required, which can be computed from Eq. (2) for a polynomial chaos
expansion (PCE) of order p and a number of random dimensions or
variables n:

(n+ p)!

N,=P+1=
n!p!

@

Further details on polynomial chaos theory are given by Eldred [15],
Walters and Huyse [18], and Ghanem and Spanos [19].

The objective with any PCE method is to determine the expansion
coefficients «;. To do this, polynomial chaos methods can be
implemented using an intrusive or a nonintrusive approach. Although
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an intrusive method may appear straightforward in theory, for
complex problems this process may be time consuming, expensive,
and difficult to implement [11]. In contrast, the nonintrusive
approach can be easily implemented to construct a surrogate model
that represents a complex computational simulation, because no
modification to the deterministic model is required. The nonintrusive
methods require only the response (or sensitivity) [20-22] values at
selected sample points to approximate the stochastic response
surface.

Several methods have been developed for nonintrusive polynomial
chaos. Of these, the point-collocation NIPC method has been used
extensively in many aerospace simulations and CFD problems
[12,14,17,20]. The point-collocation method starts with replacing a
stochastic response or random function with its PCE using Eq. (1).
Then, N, vectors are chosen in random space and the deterministic
code is then evaluated at these points, which is the left-hand side of
Eq. (1). Following this, a linear system of N, equations can be
formulated and solved for the spectral modes of the random variables.
This system is shown in Eq. (3):

Yoo) Yi6o) -+ ¥p&) ay(x) a*(x, &)

Yo Wi ¥p(§)) a;(x) _ a(x, &)

Vo) i) - e \ap) )
3)

Note that, for this linear system, N, is the minimum number of
deterministic samples required to obtain an analytical solution (i.e.,
the coefficient vector). If more samples are available that are linearly
independent, the system is considered overdetermined and can be
solved using a least-squares approach. The number of samples over
the required minimum is represented by the use of an oversampling
ratio (OSR), defined as the ratio of number of actual samples to the
minimum number required (i.e., N,). In general, the number of
collocation points can be determined by multiplying Eq. (2) by an
OSR. Hosder et al. [13] determined an effective OSR of two for the
stochastic model problems studied. It was shown that the accuracy of
the PCE is dependent on the number of collocation points.

ITII. Types of Uncertainty and Mixed Uncertainty
Propagation
A. Types of Uncertainty

Two main types of uncertainty exist in numerical modeling:
aleatory uncertainty and epistemic uncertainty [23]. Aleatory
uncertainty is the inherent variation of a physical system. Such
variation is due the random nature of input data and can be
mathematically represented by a probability density function if
substantial experimental data are available for estimating the
distribution type. An example of this for stochastic CFD simulations
could be the fluctuation in freestream quantities. Although still
considered a random variable, these variables are not controllable and
their uncertainty is sometimes referred to as irreducible.

Epistemic uncertainty in a stochastic problem comes from several
potential sources. These include a lack of knowledge or incomplete
information of the behavior of a particular variable and ignorance or
negligence with regard to accurate modeling of model parameters.
Contrary to aleatory uncertainty, epistemic uncertainty is sometimes
referred to as reducible uncertainty because an increase in knowledge
regarding the physics of a problem, along with accurate modeling,
can reduce the amount of this type of uncertainty. Epistemic
uncertainty is typically modeled using intervals because the use of
probabilistic distributions can lead to inaccurate predictions in the
amount of uncertainty in a system. Upper and lower bounds of these
intervals can be drawn from limited experimental data or from expert
predictions and judgment [11,12].

An additional, special case of epistemic uncertainty is numerical
error. This uncertainty is common in numerical modeling and is
defined as a recognizable deficiency in any phase or activity of

modeling and simulations that is not due to lack of knowledge of the
physical system. In CFD, an example of this type of uncertainty
would be the discretization error in both the temporal and spatial
domains that comes from the numerical solution of the partial
differential equations that govern the system [12]. This uncertainty
can be well understood and controlled through code verification and
grid convergence studies.

B. Mixed Uncertainty Quantification

Many stochastic problems, including those to be used in this study,
may contain both epistemic and aleatory types of uncertainty. It is
desirable to consider the contribution of both types of uncertainty
simultaneously by propagating this mixed uncertainty through the
stochastic model. This can be done using a procedure known as
second-order probability. The purpose of multistep UQ described in
the preceding sections is to obtain an accurate NIPC response surface
with computational efficiency. The NIPC response surface can then
be used within second-order probability in place of the deterministic
code, as shown in Fig. 1. Second-order probability is a type of double-
loop sampling. In the outer loop, a vector of specific values for the
epistemic variables is passed into the inner loop, where the stochastic
response surface resulting from the NIPC process is sampled for the
single epistemic sample vector and every aleatory sample vector. The
process is repeated for all of the epistemic sample vectors. This means
that the total number of samples of the NIPC response surface is the
number of epistemic samples times the number of aleatory samples.
Each iteration of the outer loop generates a cumulative distribution
function based on the aleatory uncertainty analysis in the inner
loop. After completion of the process, what remains is a series of
CDFs, which, when plotted, gives intervals of the output variable
from the model at different probability levels (i.e., P-box re-
presentation of mixed uncertainty output). This second-order pro-
bability can also be implemented with a Monte Carlo approach that
uses the original model in the place of the response surface, which is
done for the first model problem in this study for comparison with the
NIPC results.

As shown by Eldred and Swiler [24], the outer (epistemic) loop may
also be replaced by optimization-based interval size determination
approaches, which include both local and global optimization methods
to determine interval bounds of the output response at selected
probability levels. In this work, an approach based on the combination
of sampling and local optimization was used for the outer loop to
determine the bounds at selected probability levels. The outer loop was
first evaluated with a small number of samples to determine robust
estimates for the initial values of epistemic variables used in local
optimization. Then, the optimization is performed with these initial
starting points for minimizing or maximizing the response at selected
probability levels. This approach provides a computationally efficient
means of obtaining accurate results (i.e., interval bounds) via
optimization without the cost of performing large sampling on the
response surface in the outer loop.

IV. Methodology for Quantification
of Margins and Uncertainties
A. Components of QMU

The key measures in QMU are shown in Fig. 2. In this QMU
framework, for the whole aerospace system (spacecraft or aircraft) or
for each subsystem, the first step is to determine performance metrics

[ Epistemic Outer Loop ]ﬁ

Aleatory Inner Loop

—)[ Response Surface Evaluation ]

Fig. 1 Schematic of second-order probability.
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(system outputs) relevant to the systems modeling. Then, these
metrics are evaluated at a design condition (point) determined for safe
and reliable operation of the aerospace system. Each of these metrics
F typically involve some amount of uncertainty Uy due to the
inherent (aleatory) or real-life variation of parameters used in
physical models, as well as epistemic uncertainties. The safe and
reliable operation region of the performance metrics (performance
gates) may be bounded with a lower FL and/or an upper bound FU
for each metric, which may also include some uncertainty (Ug; for
FL and Uy for FU) due to the aforementioned uncertainty sources.
A measure of the distance between the design value of each
performance metric and the lower boundary, including the effect of
uncertainties Ur and Upg;, gives the lower margin Uy and the
distance between the upper boundary and the design value of each
performance metric including the effect of uncertainties U and Uy,
give the upper margin Uyp.

Using the uncertainty and the margin information, a metric has to
be developed to quantify and certify the confidence in safe operation
of a system with a given performance metric. A confidence ratio (CR)
can be defined as shown in Eq. (4). The confidence ratio is obtained as
the minimum of the ratio of the margin to the uncertainty calculated
for each side of a performance metric. For a system wide confidence
level, the minimum of the CRs is used to represent the most critical or
unreliable component of the system. Note that a performance metric
does not have to possess both an upper and a lower performance
boundary. In fact, in many engineering applications, only a single
limit may bound a performance metric. In this case, only a single ratio
of the margin to the uncertainty exists and is considered as the
confidence ratio for that particular metric (i.e., system performance or
output):

“

MUP MLWi|
UUP * ULW

CR = Min [—

B. Uncertainty Calculations

To measure the uncertainty in the performance gate(s) of a system,
the first step is to perform the actual uncertainty quantification of the
design and the performance limits. In many problems, stochastic
models may be used for determining the uncertainty in the output
based on random input variables. This can be done by various UQ
propagation methods; however, it is one of the goals of the current
study to use stochastic response surfaces for their computational
efficiency and accuracy (see Sec. II). Also, models are not always
directly available and the uncertainty must be quantified by other
means. One example could be to use experimental test data. Then, it
may be possible to represent the uncertainty of a design or
performance limit with an interval or possibly fit a distribution to the
data, depending on its behavior.

After quantifying the uncertainty in the design and the
performance limits, the next step is to quantify the uncertainty in
the performance gates. For a probabilistic representation of the
uncertainty, one approach would be to use Eqgs. (5) and (6):

UUP

= \/((FUmax)P:OS - (FUmin)p=#)2 + ((Fmin)P:OS - (Fmax)P=#)2
(5)

Un]: FU

G mmmmmmmmmmmm

UF L]: FL

M up

Urw

= \/((Fmax)P=().5 - (Fmin)P:#)2 + ((FLmin)P=().5 - (FLmax)P:#)2
(6)

Here, p represents the confidence level used in the analysis and P
represents the probability level at which the functional values are
taken. For example, if f = 0.95, this would correspond to a 95%
confidence level analysis. Note that, in these equations, the 50%
probability level was selected such that approximately half of the
uncertainty in the design and the limits is used to determine the
uncertainty in the performance gate. This selection is used throughout
this paper, but may be different depending on the application and the
desired level of conservativeness. In case of mixed uncertainty in F,
FU, and/or FL, min corresponds to the minimum and the max
corresponds to maximum response value (bound) of the interval at
that particular probability level, which can be obtained from the P
box of the associated responses. Each of the square terms represent
the uncertainty in either the design or a performance limit. Notice that
the entire range of uncertainty in the design and the performance
limits are not considered in Egs. (5) and (6). By including only the
uncertainty that will directly affect the performance gate on each side,
the amount of uncertainty is restricted to each of the performance
gates to avoid the underprediction of the reliability of the system. For
example, the uncertainty in the upper performance gate is measured
by roughly the upper half of the uncertainty in the design and the
lower half of the uncertainty in the upper performance limit.
Similarly, for the lower performance gate, the uncertainty is measured
by roughly the lower half of the uncertainty in the design and the
upper half of the uncertainty in the lower performance limit. In the
case of mixed uncertainty, a conservative approach is taken to assess
the amount of uncertainty in the performance gates. From Eq. (5), for
example, the uncertainty in the design is measured as the distance
between the upper output value at a selected probability level and the
lower output value at the 50% probability level. Notice that the latter
of the two values is taken further from the performance gate to ensure
that any uncertainty that could affect the reliability of the system is
included in the measurement of the amount of uncertainty in the
performance limit.

The desired approach is to generalize the uncertainty
measurements in Eqs. (5) and (6) to include nonprobabilistic
representations of the uncertainty. This is done with Egs. (7) and (8),
in which each of the terms are defined, based on the representation of
the uncertainty, in Tables 1 and 2 for the upper and lower performance
gates, respectively:

U = \/(UUPI = Uup)® + (Uyps = Uyps)? @)

Uw = \/(ULWI — Urw2)? + (Urws — Urwa)? (3

C. Margin Calculations

Calculation of the distance between the design condition and the
performance limit, or the margin, is a critical component of QMU.
Improper measurement could result in under- or overprediction of the

FU : Performance Upper Boundary
U, : Uncertainty in FU

: Performance at Design Point
U, :Uncertainty in F
FL : Performance Lower Boundary

M,,, Ug :Uncertainty in FL

M, :Upper Margi_n
M,,, :Lower Margin

Fig.2 Schematic of key measures used in a QMU analysis.
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Table1l Response values of different uncertainty representations for
upper uncertainty calculations

Uncertainty

representation Uypy, FU Uyp,r, FU Uyps, F Uypy, F
No uncertainty FU FU F F
Pure epistemic FU% % k g %
Pure aleatory (FU)p=os (FU)p_1s (F)p_tss (F)p=os
Mixed (FUmax)P:O.S (FUmin)P;# (Fmax)p;# (Fmin)P:().S

Table2 Response values of different uncertainty representations for
lower uncertainty calculations

Uncertainty

representation Upwi, FL Upwo, FL Uiws, F Uiwa, F
No uncertainty FL FL F F
Pure epistemic “% “% u -"2‘"* %
Pure aleatory (FL)p—os (FL) ptiit (F) poict (F)p=os
Mixed (FLmin)P:().S (FLmux )P;# (Fmin)[s:“% (Fmax)P:().S

reliability of the system. Although this measurement may graphically
appear obvious, as seen in Fig. 2, if both the design and the per-
formance limits possess uncertainty, the calculations should include
the effects of these uncertainties to obtain an accurate margin
estimate. Moreover, a general approach has been devised because the
uncertainty characteristics (aleatory, epistemic, or mixed) for the
design and limits may be different. Considering these, the calculation
of the margins for a probabilistic representation of the uncertainty can
be determined using Egs. (9) and (10) for the upper and lower
performance boundaries, respectively:

MUP = |(FUmin)P=¥ - (Fmax)p=#| (9)

Mpw = |(Fmin)P:1%/’ - (FLmax)P:'%/jl (10)

Here, f represents the confidence level used in the analysis and P
represents the probability level at which the functional values are
taken. For example, if f = 0.95, this would correspond to a 95%
confidence level analysis.

If the distribution of the performance metric and/or the design
limits are known (e.g., Gaussian), these values can be easily obtained
from the statistics of the distribution. In general, the distribution of a
system or model output is almost never known exactly, even when the
inputs are on clearly defined distributions. In this case, response
values may be obtained from a CDF formulation of the output. This is
the typical approach when considering problems under a pure
aleatory analysis or under mixed uncertainty where the outputs carry
some probabilistic representation. Note also that the “min” and
“max” subscripts in Egs. (9) and (10) indicate the response value that
should be selected when multiple response values exist at a single
probability level. For instance, this occurs when a model or system is
subject to mixed uncertainty as mentioned in Sec. IILB., which
creates a range of values at each probability level defined by multiple
CDFs (i.e., the CDFs that form the P box).

Another type of uncertainty representation of either the design
or the limits may be the nonprobabilistic or pure epistemic
representation. In this case, there is no distribution of the output and
the uncertainty is only defined by an interval. Here the approach is to
use the interval bounds as the measurement point for determining the
margins rather than a response value defined at a specific probability
level, which is not possible in this case. Note that this will be the most
conservative approach and may be warranted given the unknown
behavior of the uncertainty of epistemic intervals.

One of the objectives of this study is to demonstrate how a QMU
analysis can be performed when the output uncertainty of design
points and operational limits are different. The three possibilities

include pure epistemic (interval), pure aleatory, and mixed
uncertainty. Equations (9) and (10) can be generalized to Egs. (11)
and (12), where each term is based on the representation of the
uncertainty of the specific component of the system. The possible
values of the Myp and My are summarized in Table 3:

Myp = |Myp; — Myp,| an

My = |MLW| _MLW2| (12)

V. Analytical QMU Model Problem

To demonstrate the quantification of margins and uncertainties
using stochastic expansions with various uncertainty representation
types in the design points and performance limits, an analytical model
problem was selected. This model consists of a complex system of
highly nonlinear functions typically used as test functions in
numerical optimization studies. The objective with this model is to
demonstrate both the UQ and QMU approaches described in the
preceding sections on a general problem where two nonlinear
systems are coupled, share common input variables, and both
performance metrics and system boundaries have different
uncertainty characteristics (i.e., pure aleatory, epistemic, or mixed).
The following sections outline the deterministic model as well as the
stochastic model. Then, both UQ and QMU are performed with a
detailed description of the processes and the results.

A. Description of the Deterministic Model
1. Design

The deterministic model is shown in Fig. 3. This model consists of
two primary systems including two outputs or performance metrics.
Each system is made up of a nonlinear, analytical function. The firstis
the multivariate form of the Rosenbrock function and the second is
known as the McCormick function. Notice also the dependence of
system 2 on the output of system 1.

2. Performance Limits

The output of system 1 is constrained by both an upper and a lower
performance limit. The upper limit is composed of its own model,
shown in Eq. (13):

FU; = (y; +2x; = 1)* + 2y + x; - 5)? (13)

This function is known as the Booth function. Notice that one of the
variables in this function is the same as one of the variables in the
system design. This adds a degree of complexity to the overall
system. The lower limit is, however, not governed by a model, but
rather is made up of statistical data. The second system is only
bounded on the upper side. In this case, the uncertainty in the
performance limit is represented by an epistemic interval.

B. Description of the Stochastic Model
1. Design

The design condition model consists of four input uncertain
parameters. Two are represented by pure epistemic intervals and two

Table3 Response values of different uncertainty representations for
margin calculations

Uncertainty

representation Muyp, FU Muypy, F Myw, F My wo, FL
No uncertainty FU F F FL

Pure epistemic FUin Finax Frin FL
Pure aleatory (FU)P:Q (F)p_1ss (F)p_1s (FL)P:I#
Mixed (FUmin)p;# (Fmax)pi# (Fmin)pzzﬁ (FLlnax)P;#
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Fig.3 System design schematic for the analytical model problem.

are aleatory variables with uniform distributions, indicating that the
model design output (performance metric) will involve mixed
uncertainty. These variables are shown in Table 4.

2. Performance Limits

As stated earlier, the upper boundary on the system 1 performance
limits is defined by the model in Eq. (13). This model is made up of
two uncertain variables, shown in Table 5. Notice again that one of the
variables is the same as one from the design condition of the system.

The lower limit for system 1 is assumed to be made up of purely
statistical data. These data are represented by a Gaussian distribution
with a mean of —10.0 and a standard deviation of 0.1. Lastly, the
uncertainty in the upper limit of system 2 is represented by an
epistemic interval given by [15.0, 17.0]. A summary of the
performance limit uncertainty information is given in Table 5.

C. Uncertainty Quantification
1. Design

Performing the UQ on the performance metrics and the
performance limits is the next step in the analysis. For system 1 of the
design, a stochastic response surface could be formulated using a
fourth-order polynomial chaos expansion. With four uncertain
variables, a total number of 70 evaluations of the deterministic model
were required using an OSR of two. The results are compared with a
Monte Carlo (MC) simulation using the sampling/optimization
approach in the epistemic loop of second-order probability described
in Sec. IIL.B., which required 2074 evaluations of the deterministic
model (optimization performed at 15 probability levels). The upper
and lower CDFs of the output P box are given in Fig. 4, which also
indicates the accuracy of the NIPC response surface when compared
with MC.

For system 2 of the design, a stochastic response surface could be
formulated using a fourth-order polynomial chaos expansion. With
four uncertain variables, a total of 70 evaluations of the deterministic
model were required using an OSR of two. The results are compared
with a Monte Carlo simulation using the sampling/optimization
approach in the epistemic loop of second-order probability described

Table4 Uncertain input parameters for the analytical model
performance metrics

Mean/lower Standard deviation/upper
Variable Distribution boundary boundary
X1 Epistemic -1.0 1.0
X5 Uniform -0.5 0.4
X3 Uniform -0.6 0.7
X4 Epistemic -0.5 1.0

Table 5 Uncertain input information for system 1 and system 2
performance limits

Mean/lower boundary ~ Standard deviation/

Variable Distribution upper boundary
FU, input y, Gaussian 25.0 2.0
FU, input x, Epistemic -1.0 1.0
FL, Gaussian -10.0 0.1
FU, Epistemic 15.0 17.0

1 .
B //
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0.6
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Fig.4 System 1 output P-box plot.
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Fig.5 System 2 output P-box plot.

in Sec. IL.B., which required 1675 evaluations of the deterministic
model (optimization performed at 15 probability levels). The upper
and lower CDFs of the output P box are given in Fig. 5, which also
shows a great agreement between NIPC and MC results.

2. Performance Limits

Similar to the design of the system, the uncertainty in the upper
performance limit of system 1 was represented by a second-order
polynomial chaos expansion. This required only 12 evaluations of the
deterministic model using an OSR of two. A comparison with
Monte Carlo is shown in Fig. 6 depicting the upper and lower CDFs
of the output. Note that a total number of 61 evaluations of the
deterministic model were required for the combined sampling/
optimization Monte Carlo analysis (optimization performed at 15
probability levels).

The uncertainty in the two other performance limits are already
specified because there is no model used to determine the output. For
the lower performance limit of system 1, the uncertainty is
represented by a Gaussian distribution with a mean of —10.0 and a
standard deviation of 0.1. The upper limit on system 2 is represented
by an epistemic interval ranging from 15.0 to 17.0.
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D. Quantification of Margins and Uncertainties

After obtaining the uncertainty in the components of the system,
the QMU analysis can be performed. A 95% confidence analysis (i.e.,
p = 0.95) has been selected for this problem. Using the equations
and tables given in Sec. IV.B., the margin and performance gate
uncertainty calculations can be performed. For system 1, both the
design and the upper performance limit are represented by mixed
uncertainty, whereas the lower limit is a pure aleatory representation.
A summary of the margin and performance gate uncertainty values is
given in Table 6, as well as the resulting confidence ratios of the
system. Note that the minimum of these two confidence ratios is
deemed the confidence ratio of system 1. The margin and uncertainty
measurements are shown in Fig. 7. Note that the figures are not drawn
to scale to increase the clarity.

Similarly, the QMU analysis is performed on system 2. Here, the
design is represented by mixed uncertainty, whereas the only
performance limit, located on the upper side of the performance
metric, is represented by an epistemic interval. A summary of the
system 2 QMU analysis metrics is as follows: upper performance
gate, 8.84 margin, 5.28 uncertainty, and 1.67 confidence ratio.

There are two resulting confidence ratios from the QMU analysis,
one from each system. A system-wide confidence level would then be
the minimum of these two ratios, which is shown to be 0.057. This
value indicates very poor confidence in the reliability of the system
because the uncertainty in the performance gate between the design
and the lower performance limit is significantly larger than the
margin. From a practical standpoint, this would indicate that a
reanalysis/design of the system, the performance limit, or both may
be necessary to improve the reliability of the system.

VI. Spacecraft Reentry QMU Model Problem

To further demonstrate the quantification of margins and
uncertainties using stochastic expansions with various uncertainty
representations between the design points and performance limits, a
second aerospace model problem is chosen, which is a multisystem
physics-based model for atmospheric, lifting entry of a spacecraft.
Systems within the design include a model for six-degree-of-freedom
reentry dynamics used for the determination of a reentry trajectory.

Table 6 System 1 QMU analysis metrics

Performance gate  Margin  Uncertainty CR

Lower 12.41 217.51 0.057
Upper 1119.65 1111.04 1.008

The second system is a prediction model of stagnation point,
convective heat flux used to determine the maximum heat load
experienced along the reentry trajectory. In this problem, a generic
planetary entry capsule similar to the Crew Exploration Vehicle was
analyzed for a lunar return mission [25-27]. The purpose of this
model is to demonstrate the QMU of a coupled, multisystem design
possessing mixed uncertainty, as well as performance boundaries
with different types of uncertainty representation.

A. Description of the Deterministic Model
1. Design

The deterministic model is shown in the system diagram in Fig. 8.
This model consists of two primary systems with three outputs or
performance metrics.

The first system has two primary components or subsystems. The
first of these is the trajectory model consisting of a six-degree-of-
freedom model for atmospheric entry of a lifting body. The
kinematics are shown in Eqs. (14-17) and the equations of the
dynamic system are shown in Egs. (18-20) [28,29]:

d
£=VMy (14)

dp _ V cosycosy

= 15
dr r as)
%:Vcosysiny/ (16)
dr r cos ¢

d

d—j:Vcosy (17)

ﬂ— — sin
dt = m § 4

+ w*r cos ¢(sin y cos ¢ —cos y sin ¢ cos y)  (18)

dy L V2 .
V—=—coso—gcosy+—cosy+ 2wV cos ¢ sin y
dt m r
+ @*r cos p(cos y cos ¢ + sin y sin ¢ cos y) (19)
de/ L sin ¢ N 2 in y tan §
— = ———+4—cos y sin y tan
dt mcosy r r v
. o’r .
—2wV(tan y cos ¢ cos y —sin ¢) + sin ¢ cos ¢ sin y
cos y

(20)

In this system, V is velocity, m is mass, D is drag, L is lift, r is the
orbital radius, y is the flight-path angle, 9 is the longitude, ¢ is the
latitude, o is the bank angle, w is the planetary body rotational speed,
y is the heading angle, and s is the range. This is a system of seven
ordinary differential equations that can be numerically integrated
simultaneously in time. An example trajectory for a typical lunar
return skip reentry mission is shown in Fig. 9.

The second component of this system is a guidance system,
coupled to the primary reentry trajectory model. The guidance system
is used to correct the trajectory in the instance of deviation from a
nominal trajectory, such as when the reentry is subject to perturbation
or uncertainty. To correct the trajectory, the guidance system uses a
search algorithm to modify the bank angle of the trajectory. This
effectively changes the direction of the lift vector to steer the
spacecraft toward a target landing location. In this model problem,
the reentry trajectory begins with the bank angle on the nominal value
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Fig.9 Sample skip reentry trajectory.

for the baseline trajectory. A single bank angle correction is
performed when a sensible atmosphere is detected, which occurs
approximately when the g load reaches a value of 0.05 [30]. The
necessary bank angle correction is determined using a simple root-
finding method, shown in Eq. (21) for the ith step in the search. The
search is based on the distance between the target location and the
projected landing location at the current bank angle shown in
Eq. (22), which is only a function of the bank angle because no other
control is being simulated:

This is a critical trajectory and vehicle design value because it directly
influences the safety of the crew as well as the structural loads that the
vehicle may experience. The second output is the required bank angle
correction. This value may be critical in the design of an adequate
reaction control system including propulsive capabilities and
propellant requirements [31].

The second system in this model is a model for the stagnation point
convective heat flux of a blunt body in hypersonic flow. The Fay and
Riddell [32] correlation was used to approximate the stagnation point
heat transfer for a blunt body in hypersonic flow. This model assumes
a laminar boundary layer, thermochemical equilibrium flow, and a
fully catalytic wall. The model is shown in Eq. (23):
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) [du,
quw = 0-76([)'”70'6)(pwﬂw)o'l(/)6/46)0'4 E(hoa - hW)

y (1 (LS = 1)@) 23)
ho,
where
du, = 1 2P —Py) (24)
dx R, Pe
hp =) ei(h)), (25)

In the preceding equations, Pr is the Prandtl number, Le is the Lewis
number, R, is the radius of curvature of the body, hp is the
dissociation enthalpy, ¢; is the mass fraction of the atomic species
within the boundary layer, and (h(})l_ is heat of formation of atomic
species i. Note also that the subscripts w and e represent the wall and
boundary-layer edge quantities, respectively. For this problem, a
boundary condition at the wall is necessary to close the problem
because fluid properties at the wall are required. A radiation,
adiabatic wall condition was assumed. This implies that the wall
temperature is not fixed, but the heat flux through the wall is zero (i.e.,
the heat transfer to the wall from the fluid due to conduction and
diffusion must equal the heat transfer radiated away from the
surface). Mathematically, this is shown with Eq. (26):

‘.]rzq-d+q.c =‘?w (26)
where
g, = eoT, 27

Here, g, is the heat transfer due to diffusion, g is the heat transfer due
to conduction, ¢ is the wall emissivity, and o is the Stefan—Boltzmann
constant. Note that the heat transfer due to the radiation from the
shock layer has been neglected. For given freestream conditions, the
flow properties behind the standing bow shock along the stagnation
streamline can be calculated using an equilibrium shock calculation
procedure outlined in Anderson [33]. It can be assumed that the
properties directly behind the shock are the properties on the edge of
the boundary layer. The boundary-layer edge viscosity is calculated
using Sutherland’s law. The pressure at the wall can be assumed to be
the pressure at the boundary-layer edge. Finally, the last step is to find
the remaining properties at the wall; however, these are unknown
because wall temperature is not specified. This requires then that
Egs. (23) and (26) be solved simultaneously with the system being
implicitly dependent on the wall enthalpy (found using high-
temperature equilibrium polynomial curve fits from Tannehill and
Mugge [34]), wall viscosity (from Sutherland’s law), and the wall
density (from the equation of state). A simple root-finding method
can be implemented to resolve the system. The solution of the system
then gives the radiative, adiabatic wall temperature at which the
convective heat flux to the wall is radiated away from the surface.
An important note should be made about the coupling between the
reentry dynamics of system 1 and the aerothermodynamics of system 2.
The heat flux is calculated at multiple points along the trajectory to
locate the maximum value. Note that calculations are not performed
when the continuum flow assumption is no longer valid (altitude greater
than approximately 100 km) and when the flow is no longer supersonic.
These conditions violate the assumptions of the model. However, the
maximum heat flux would not occur in these regions, and so there is no
possible loss of accuracy in capturing the maximum heat load.

2. Performance Limits

For system 1, performance limits exist for both outputs. The
maximum g load is constrained by the limits the crew and the
structure of the spacecraft can withstand, meaning that only an upper

limit exists. To represent this limit, an epistemic interval has been
used. The performance limits of the bank angle correction would be
based on the control and propellant limitations of the spacecraft. In
this study, the upper and lower limits are firm boundaries, with no
uncertainty. For system 2, there is only an upper limit on the heat flux
because any lower limit would not be a concern. In this case, the
upper limit was represented by an epistemic interval. This interval
was selected to reflect the physical limitations of current thermal
protection system materials.

B. Description of the Stochastic Model
1. Design

In system 1, there is a total of 10 uncertain variables, both coming
from epistemic and aleatory sources. Epistemic sources include entry
interface (EI) altitude, mass, drag coefficient, and lift coefficient.
Aleatory sources include El velocity, El flight-path angle, the reference
area, El latitude, El longitude, and El heading angle. The uncertainty in
these parameters and their distribution are shown in Table 7. Note that
many of the selected uncertain parameters and classifications are
consistent with previous uncertainty work in this area [25,26,28,29].

For system 2, 10 variables were selected as sources of uncertainty.
Both epistemic (model form) and aleatory (inherent) forms of
uncertainty were considered. The epistemic uncertain variables were
as follows: Lewis number, Prandtl number, boundary-layer edge
viscosity, emissivity, heats of formation for nitrogen and oxygen, and
the power over the Lewis number. These model variables are
considered as epistemic by imposing uncertainty on them due to lack
of knowledge. Note that uncertainty in the two heats of formation and
the boundary-layer edge viscosity were modeled through the
introduction of a factor k£ to each variable, which was used to
represent a variation in the uncertain variable [e.g., x = k(x)]. The
factor k for each variable was treated as an epistemic uncertain
variable. The other three variables were treated as aleatory (inherent)
uncertain variables: freestream velocity, freestream density, and the
radius of curvature of the body. Random fluctuations in the
freestream conditions are possible during flight, and variations in
the vehicle geometry are possible due to manufacturing processes.
These variables were assumed normally distributed about some mean
with a coefficient of variance of 1%. The input uncertainties for each
of the uncertain variables are summarized in Table 8.

Table 7 Reentry model uncertain parameters for system 1

Mean/ Standard deviation/
Variable Distribution minimum maximum
Elh,m Epistemic 121,800 122,000
m, kg Epistemic 9,000 9,500
Cp Epistemic 1.27 1.31
C Epistemic 0.367 0.407
ElU,,m/s  Gaussian 10,900 30.0
Ely, deg Uniform —6.1 -59
S, m? Gaussian 19.9 0.2
El ¢, deg Gaussian 0.0 1.0
EIL 0, deg Gaussian 0.0 1.0
El y, deg Gaussian 0.0 1.0

Table8 Reentry model uncertain parameters for system 2

Mean/ Standard deviation/
Variable Distribution minimum maximum
Le Epistemic 1.358 1.442
Pr Epistemic 0.679 0.721
u, factor Epistemic 0.97 1.03
€ Epistemic 0.776 0.824
h(;», N, Epistemic 0.97 1.03
Factor
h(;., O, factor  Epistemic 0.97 1.03
PoweronLe  Epistemic 0.5044 0.5356
U, factor Gaussian 1.0 0.01
Poo factor Gaussian 1.0 0.01
R,, m Gaussian 6.93 0.0693
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2. Performance Limits

For system 1, the upper performance limit is represented by an
epistemic interval, as stated in the preceding section. The g-load limit
was selected to be on the interval [10,11] g. Also for system 1, the
limitations of the bank angle correction are defined as boundaries
with no uncertainty. The boundaries were elected to be £20 deg.
For system 2, the epistemic interval was selected to be
[900, 1200] W /cm?. The uncertainty in this interval was extrapolated
from several sources, indicating different heat load values of the
Stardust mission, including CFD simulations as well as sensor data
collected during flight [35-37].

C. Uncertainty Quantification
1. Design

Performing the UQ in the system design condition and the
performance limits is the next step in the analysis. From the preceding
section, there is a total of 20 uncertain parameters in this model
problem. Using Eq. (2), 462 evaluations of the deterministic model
were required for an OSR = 2 with second-order polynomial chaos
expansions. The upper and lower CDFs of the output P boxes are
given in Figs. 10 and 11 for the g load and bank angle correction,
respectively. Note that these were obtained using the sampling
approach for mixed uncertainty outlined in Sec. IIL.B..
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Fig. 10 Maximum g-load P-box plot from system 1.
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Fig. 11 Bank angle correction P-box plot from system 1.

A similar analysis was performed on system 2 of the design. A
stochastic response surface could be formulated using a second-order
polynomial chaos expansion. The upper and lower CDFs of the
output P box are given in Fig. 12, which were obtained using the
sampling approach for mixed uncertainty outlined in Sec. IILB..

In the previous model problem, a comparison of Monte Carlo and
NIPC results was made to confirm the accuracy of the NIPC response
surfaces. This was possible because of the low computational cost of
the model. The reentry dynamics model is significantly more
computationally expensive, making an accurate Monte Carlo
solution infeasible to obtain. However, it is still possible to check the
accuracy of the surrogate model by comparing results obtained from
the actual model to those obtained from the surrogate model at the
same sample location in the design space. In this study, 20 sample
points, distributed evenly in the design space, were used to measure
the accuracy of the surrogate models. Of the three surrogates created
in this model problem, the highest mean error in the sample points
was about 0.2%, validating the selection of second-order polynomial
chaos expansions. Note that these sample points differ from the
sample points used to train the surrogate model.

2. Performance Limits

No uncertainty quantification was performed on the performance
limits for this model because both models were assigned epistemic
intervals or boundaries with no uncertainty.

D. Quantification of Margins and Uncertainties

After assessing the uncertainty in the components of the system,
the QMU analysis can be performed. A 95% confidence analysis (i.e.,
p = 0.95) has been selected for this problem. Using the equations
and tables given in Sec. IV.B., the margin calculations can be
performed. For system 1, both the design metrics are represented by
mixed uncertainty. The upper performance limit of the maximum g
load was represented by an epistemic interval, whereas the upper and
lower bounds of the bank angle correction were fixed values with no
uncertainty. A summary of the margin and performance gate
uncertainty values, as well as the resulting confidence ratios of
system 1 is given in Table 9 for the bank angle and as follows for the
g-load: upper performance gate, 4.13 margin, 0.67 uncertainty, and
6.17 confidence ratio. Note that the minimum of these two
confidence ratios is deemed the confidence ratio for the system.

Similarly, the QMU analysis is performed on system 2. Here, the
design is represented by mixed uncertainty, whereas the only
performance limit is represented by an epistemic interval. A summary
of the margin and performance gate uncertainty values are as follows:
upper performance gate, 775.92 margin, 150.98 uncertainty, and 5.14
confidence ratio.
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Table9 Bank angle correction QMU
analysis metrics from system 1

Performance gate Margin Uncertainty CR

Lower 12.61 9.77 1.29
Upper 13.67 9.14 1.50

There are two resulting confidence ratios from the QMU analysis,
one from each system. A system-wide confidence level would then be
the minimum of these three ratios, shown to be 1.29. This value
indicates the weakest system in the design; however, in this case, the
margins are greater than the uncertainty and the system design may be
acceptable. If not, this would indicate that a reanalysis/design of the
system, the performance limits, or both may be necessary to improve
the reliability of the system.

VII. Conclusions

This study had two primary objectives for further advancement of
the QMU methodologies implemented for integrated spacecraft
systems models. The first objective was to demonstrate the use of
stochastic expansions, based on nonintrusive polynomial chaos, to
efficiently quantify the uncertainty in system design performance
metrics, as well as performance boundaries. The second objective
was to define procedures to measure margin and uncertainty metrics
for QMU analysis of systems containing multiple types of
uncertainty representation. To demonstrate the QMU methodologies
developed in this work, two model problems were selected. These
models contained design metrics and the performance limits, which
included mixed (aleatory and epistemic) uncertainties.

The first model consisted of a complex system of highly nonlinear
analytical functions typically used as test functions in numerical
optimization studies. The objective with this model was to
demonstrate both the uncertainty quantification using stochastic
expansions and the QMU approaches on a general mathematical
problem containing two coupled nonlinear systems that share
common input variables. Additionally, both performance metrics and
system boundaries have different uncertainty characteristics.

The second model was a coupled multisystem, multiphysics model
of a spacecraft reentry. The design consisted of two physics-based
systems possessing both epistemic and aleatory uncertainty. The first
was a model for the reentry dynamics of a six-degree-of-freedom
lifting body. The performance metrics of this system were the
maximum g load experienced along the trajectory and the bank angle
correction required to reach a target landing location. These are
critical values in the design of a reentry system because it affects
structural design of the spacecraft, the safety of any crew on board,
and the design of the control system used during reentry. Performance
boundaries were selected to reflect possible limitations of both
performance metrics. The second system, which was coupled to the
first, was a model for the stagnation point convective heat flux.
Calculations were performed at multiple points along the trajectory to
determine the maximum convective heat load experienced during
reentry. The performance boundary of this metric was defined by
current thermal protection material limitations and flight certifications.

Overall, the work done in this study has demonstrated a com-
putationally efficient and accurate framework for the quantification
of margins and uncertainties in complex spacecraft systems models.
Procedures were outlined to treat various types of uncertainty
representation in both performance metrics and performance limits.
Multiple model problems, ranging in complexity, were used to not
only demonstrate the methodologies presented in this work, but also
to iterate the importance of accurate system reliability analysis.
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