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The objective of this paper is to implement Dempster-Shafer Theory of Evidence (DSTE) in the presence
of mixed (aleatory and multiple sources of epistemic) uncertainty to the reliability and performance
assessment of complex engineering systems through the use of quantification of margins and
uncertainties (QMU) methodology. This study focuses on quantifying the simulation uncertainties, both
in the design condition and the performance boundaries along with the determination of margins. To
address the possibility of multiple sources and intervals for epistemic uncertainty characterization, DSTE
is used for uncertainty quantification. An approach to incorporate aleatory uncertainty in Dempster—
Shafer structures is presented by discretizing the aleatory variable distributions into sets of intervals. In
view of excessive computational costs for large scale applications and repetitive simulations needed for
DSTE analysis, a stochastic response surface based on point-collocation non-intrusive polynomial chaos
(NIPC) has been implemented as the surrogate for the model response. The technique is demonstrated
on a model problem with non-linear analytical functions representing the outputs and performance
boundaries of two coupled systems. Finally, the QMU approach is demonstrated on a multi-disciplinary

analysis of a high speed civil transport (HSCT).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of this paper is to implement Dempster-Shafer
Theory of Evidence (DSTE) in the presence of mixed (aleatory and
multiple sources of epistemic) uncertainty to the reliability and
performance assessment of complex engineering systems through
the use of quantification of margins and uncertainties (QMU) meth-
odology. Specifically, uncertainty quantification (UQ) has been used as a
tool of certification to decide whether a system is likely to perform
safely and reliably within design specifications. The unique contribu-
tions of the current study to the system reliability and safety research
can be summarized as follows: the current work focuses on the
creation of a novel QMU framework in terms of Dempster-Shafer
structures (belief and plausibility) for the characterization of uncer-
tainty in system design performance as well as the performance
boundaries to obtain uncertainty and margin metrics to evaluate the
system safety and reliability. Specifically, DSTE is used for uncertainty
quantification to address the possibility of multiple sources and
intervals for epistemic uncertainty characterization. Furthermore, the
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DSTE is utilized for mixed uncertainty quantification by discretizing
the aleatory probability distributions into optimum sets of intervals
and treating them as well-characterized epistemic variables. In addi-
tion, the response quantities of interest for design performance and
boundaries are represented with stochastic surrogates based on non-
intrusive polynomial chaos to reduce the computational expense of
implementing DSTE for uncertainty quantification of high-fidelity
complex system models.

To review the previous work and contrast with the current study;,
the following section gives a detailed literature review on QMU
methodology, epistemic and aleatory uncertainty considerations in
QMU, and DSTE for epistemic and mixed uncertainty representation.
In Section 3, we briefly discuss different types of uncertainties present
in a computational model. Section 4 gives an overview of basics of
point-collocation non-intrusive polynomial chaos (NIPC) methodology.
In Section 5, we present the mathematical framework for Demp-
ster-Shafer Theory of Evidence for mixed uncertainty quantification
using NIPC response surface. Section 6 describes the incorporation of
uncertainty measures of evidence theory into QMU. The newly
developed QMU approach is demonstrated in Section 7 on a model
problem with non-linear analytical functions representing the outputs
and performance boundaries of two coupled systems. In Section 8, the
proposed QMU methodology is demonstrated on a multi-disciplinary
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Nomenclature

M margin

u uncertainty

FU upper boundary performance
Ury uncertainty in FU

FL lower boundary performance
Ur uncertainty in FL

F performance at design condition
Ur uncertainty in F

Muyp upper margin

My lower margin

M Mach number

a angle of attack

A taper ratio

A sweep angle

n number of random variables

Ns number of samples

n, over-sampling ratio

D, order of polynomial chaos

& standard input random variable vector

N number of terms in a total-order expansion
W random basis function

a coefficient in polynomial chaos expansion
a* stochastic function

Bel belief

Pl plausibility

u Universal set

U set of focal elements of U

BPA basic probability assignment

m(e) BPA corresponding to subset € of U

P belief/plausibility/probability level

Y confidence level

analysis of a supersonic civil transport. Section 9 concludes the paper
by summarizing the findings of the current study.

2. Literature review
2.1. QMU methodology and confidence ratio

QMU is a methodology developed to facilitate analysis and comm-
unication of confidence for certification of complex systems, which is
performed with quantified uncertainty and margin metrics obtained
for various system responses and performance parameters. In the
recent years, a number of studies were reported on the theoretical
development and the application of the QMU concept in the certifica-
tion of reliability and safety of nuclear weapons stockpile [1-5]. The
description of the key elements of a QMU framework that can be used
to address risk and risk mitigation for the certification of nuclear
weapons was presented by Sharp and Wood-Schultz [1]. Eardley [3]
described QMU as a formalism dealing with the reliability of complex
technical systems and the confidence that can be placed in estimates
of reliability. They also investigated the main components (perfor-
mance gates, margins, and uncertainties) of the QMU methodology.
Key ideas underlying the concept of QMU were defined by Pilch et al.
[6]. They claimed that QMU provides input for a risk-informed
decision making process and constitutes a decision-support metho-
dology for complex technical decisions that are made under condi-
tions of uncertainty.

Pepin et al. [7] presented a practical QMU metric for the certifica-
tion of complex systems in terms of the ratio of margin (M) and
uncertainty (U), known as confidence ratio (CR) or confidence factor.
The metric allowed uncertainty both on the operating region and the
performance requirement and was not restrictive to a probabilistic
definition of the uncertainty. A study by Lucas et al. [8] utilized the
QMU methodology to study the reliability of a ring structure. Accord-
ing to the author, if U denotes a suitable measure of uncertainties and
has been quantified accurately, the confidence ratio may be taken as a
rational basis for certification. Also, a QMU approach based on
confidence ratio was used for the characterization of the operation
limits of the supersonic combustion engine of a hypersonic air-
breathing vehicle by Iaccariono et al. [9]. Some previous work have
expressed a concern for the use of confidence ratio as the sole
indicator of confidence [10]. Pilch et al. [6] expressed dissatisfac-
tion with the confidence ratio metric being deceptively simple and
involving significant loss of information.

Compared to the previous work, the current study is expected to
contribute to the QMU methodology by efficient implementation of
DSTE for the calculation of margins and uncertainties, which is the
primary focus of the paper. Following some previous studies, the
current work also utilizes confidence ratio as a measure of system
safety in the demonstration of the UQ and QMU methodologies
developed, however more sophisticated measures utilizing the UQ
methodology introduced in this paper could be investigated and
integrated to the QMU framework in future studies.

2.2. Epistemic and aleatory uncertainty considerations in QMU

As implied in the previous section where the QMU methodology is
reviewed, one should not forget that uncertainty quantification (deter-
mination of output uncertainty resulting from uncertainty in inputs) is
a broad research area on which the QMU process is dependent.
Uncertainties in engineering systems can be characterized mainly as
aleatory (inherent or irreducible) uncertainty and epistemic (reduci-
ble) uncertainty originating due to lack of knowledge. Pilch et al. [6]
emphasized the need to separate aleatory and epistemic uncertainty
in QMU. Helton [11] presented a comprehensive study on QMU, which
included a detailed analysis of the QMU concept with different
representations of uncertainty. Oberkampf et al. [12] have described
various methods for estimating total uncertainty by identifying all
possible sources of variability, uncertainty and error in computational
simulations. Urbina et al. [13] proposed a methodology to quantify the
margins and uncertainty in presence of mixed uncertainties through a
framework based on Bayes networks and further developed a QMU
metric in terms of probability of failure. A new formalism based on
Bayesian inference, known as probabilistic QMU or pQMU, was
introduced by Wallstrom [14], which was fully probabilistic and
showed how QMU may be interpreted within the framework of
system reliability theory. Epistemic uncertainty was represented using
a Bayesian approach by transforming the bounds to probability
density functions. Many have expressed concern about modeling
epistemic uncertainty via probability density functions due to the
assumption of a higher resolution of knowledge than what is really
present [15]. Owhadi et al. [16] introduced a rigorous framework for
UQ (optimal uncertainty quantification) that did not implicitly impose
inappropriate assumptions on the characterization of uncerta-
inty, which has been the weakness of most of the UQ methods.
They further compared the framework with different UQ methods
like Monte Carlo strategies, stochastic expansion methods, sensiti-
vity analysis and Bayesian inference. However, the paper did not
specifically discuss methods for different representation of epistemic
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uncertainty such as possibility theory, interval analysis or evidence
theory.

2.3. DSTE for epistemic and mixed uncertainty representation

As an alternative to Bayesian approach, formulation of mathema-
tical structures like the evidence theory [17-19] has been an attractive
approach for appropriate representation of epistemic uncertainty due
to the fact that it does not make assumptions regarding the distribu-
tion of the variables described by intervals. DSTE approach is parti-
cularly useful when the uncertain variables are defined by more than
one interval (i.e, multiple sources or expert opinions on uncertainty
ranges). Probability theory and evidence theory were introduced as
possible mathematical structures for the representation of the epis-
temic uncertainty associated with the performance of safety systems
by Helton et al. [20]. The results suggested that evidence theory
provided a valuable representational tool for the display of the impl-
ications of significant epistemic uncertainty in the inputs of complex
systems. Furthermore, Helton et al. [21] explained the use of evidence
theory as an alternative to the use of probability theory for the
representation of epistemic uncertainty in QMU-type analyses. Swiler
et al. [22] studied various approaches like interval analysis and DSTE
in order to characterize epistemic uncertainty in the calculation of
margins.

In previous years, extensive research has been dedicated to
improve the practical application of the Dempster-Shafer theory to
complex models due to the excessive computational cost associated
with the required number of simulations [23-25]. A sampling based
computational strategy for the representation of epistemic uncertainty
in model predictions with evidence theory was introduced by Helton
et al. [15] to reduce the computational cost of crude Monte Carlo
method. In the present paper, a stochastic response surface con-
structed using point-collocation NIPC [26-30] has been implemented
as a response surrogate in uncertainty analysis in order to reduce the
computational cost.

Recently, Eldred et al. [31] have demonstrated mixed UQ using
different methods like interval optimization, second-order probability
[19,28,30,32] and DSTE. They investigated the use of nested sampling
for mixed UQ, where each sample taken from the epistemic distribu-
tions at the outer loop results in an inner loop sampling over the
aleatory probability distributions. In order to demonstrate the accu-
racy and efficiency over crude nested sampling, the mixed UQ results
obtained through local gradient based and global non-gradient based
optimization on the outer epistemic loop within nested sampling
approach were compared. Recently, Sentz and Ferson [33] proposed
the use of probability bound analysis coupled with Dempster—Shafer
theory for treating mixed uncertainty, as one of the tools relevant for
QMU. In their work, the p-boxes [34] for aleatory uncertain para-
meters were discretized into 100 equiprobability levels in order to be
represented as Dempster—Shafer structures. In the current paper, we
propose to use the DSTE procedure for mixed UQ by discretizing the
aleatory probability distributions into optimum sets of intervals
(explained mathematically in Section 5) and treat them as well-
characterized epistemic variables. For accurate representation in terms
of Dempster-Shafer structures, these parameters are discretized into
an optimum number of sets of intervals based on a previous study by
Shah et al. [35]. This approach enables us to represent mixed
uncertainty in terms of Dempster—Shafer structures for uncertainty
analysis with multiple sources of uncertainty.

3. Types of uncertainty

Uncertainties are assigned to the specification of input physical
parameters that are required for computational models. Two types
of uncertainties exist in analyses of complex systems: aleatory

uncertainty and epistemic uncertainty. Many contributions have
been dedicated to emphasize the importance of characterization
and treatment of uncertainties in performance assessments (PAs)
for complex systems [36-41]. Helton [42] illustrates the use of the
Kaplan/Garrick ordered triple representation for risk in maintain-
ing a distinction between aleatory (stochastic) and epistemic
(subjective) uncertainty.

3.1. Aleatory uncertainty

Aleatory uncertainty, also known as probabilistic uncertainty,
arises due to inherent physical variability present in the system being
analyzed. It is not strictly due to lack of knowledge and is irreducible.
Conducting additional experiments might provide more description of
the variability but cannot be eliminated completely. For example, the
Mach number can be treated as an aleatory uncertain variable in the
computational aerodynamics analysis of airfoils or wings.

3.2. Epistemic uncertainty

The epistemic uncertainty arises due to lack of knowledge and is
reducible by using, e.g., a combination of calibration, inference from
experimental observations and improvement of the physical models.
One source of epistemic uncertainty is the set of assumptions
introduced in the derivation of mathematical models of the physical
phenomena. This type of uncertainty cannot be defined in a prob-
abilistic framework unless we assume a specific distribution which
may lead to inaccurate results as shown by Oberkampf et al. [43].
Thus, epistemic variables are often modeled using intervals derived
from experimental data or expert judgment with specified lower and
the upper bounds. Turbulence modeling parameters (e.g., closure
coefficients) in computational fluid dynamics (CFD) simulations pre-
sent a good example for epistemic uncertainty.

4. Point-collocation non-intrusive polynomial chaos

Polynomial chaos is an uncertainty propagation approach which
has been used in many recent UQ studies. In this work, we focus on
generalized polynomial chaos using the Wiener-Askey scheme, which
is explained in detail by Xiu and Karniadakis [44]. In previous years,
many researchers have utilized polynomial chaos theory in stochastic
computations [26-28,35,45,46]. In non-intrusive polynomial chaos
expansion (PCE), simulations are used as black boxes and the calcula-
tion of chaos expansion coefficients is based on a set of simulation
response evaluations. The point-collocation NIPC is derived from the
polynomial chaos theory, which is based on spectral representation of
uncertainty [47]. An important aspect of the spectral representation of
uncertainty is that a stochastic response function can be decomposed
into deterministic and stochastic components. Thus, for any stochastic
response function a*, we can write,

P
a*X. E)~ 3 X wi(€) M
i=o

where aj(7) is the deterministic component and y; is the random
basis function corresponding to jth mode. Generally, a* is a function of
deterministic variable vector X and _the n-dimensional independent
standard random variable vector & =(&,...,&,). In theory, the
expansion given in Eq. (1) is an infinite series. However, in practice
this series is truncated at a finite number of terms (hence the
approximation sign used in Eq. (1) based on a selected expansion
order and finite number of uncertain variables. The PCE can be created
on a complete order. In this case, the total number of output modes
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(N¢) for an expansion order of p and n random variables is given by

n+p)!
Ne=Pt1=" mp‘!’) @)

An alternative approach as indicated by Eldred et al. [48] is to
employ a ‘tensor-product expansion’, in which polynomial order
bounds are applied on a per-dimension basis including all combina-
tions of the one-dimensional polynomials. In this work, we employ
total-order expansion from creating the polynomial chaos response
surfaces. The basis functions used in Eq. (1) are optimal polynomials
that are orthogonal with respect to a weight function over the support
region of the input random variable vector. In terms of L? convergence
of the statistics, the Hermite polynomial is optimal for normal
distribution whereas the Laguerre and Legendre polynomials are used
for exponential and uniform input uncertainty distributions respec-
tively. The detailed description of the orthogonal polynomials for
different input uncertainty distributions (e.g., uniform, normal, expo-
nential, etc.) and the associated weight functions are given by Hosder
[29], Xiu and Karniadakis [44], and Eldred et al. [48].

The collocation based NIPC starts with replacing uncertain vari-
ables of interest with their polynomial expansions derived from
Eq. (1). Next, P+1(N,) vectors (&;=1{&1,65,...80);0=0,1,2,...,P)
are sampled from the uncertainty space defined by the bounds of the
uncertain variables with Latin Hypercube (LH) sampling for a given
polynomial chaos expansion with number of modes determined from
Eq. (2). The deterministic model (e.g., computational fluid dynamics
model, finite element model, etc.) is evaluated at these points. With
the left hand side of Eq. (1) known from the solutions of the
deterministic model evaluations at the sample points, a linear system
of equations can be obtained as

Wo(go) ’/’1(?0) WP(E)O) Qg 0!*(?, go)

wol& 1) wi(&q) wp(& 1) a.l _ a (X, &) 3)
. - . a I

wol(&p) wi(&p) wp( & p) a’ (X, &p)

Eq. (3) represents a linear system of equations which needs to be
solved in order to determine the spectral modes ¢; (j=0,1,...,P) for
the stochastic function a*. Eq. (2) is considered as the minimum
number of deterministic samples required to solve the linear system
of equations. However, if more number of deterministic samples (Ns)
are available, the over-determined system is solved using a least
squares approach. The term, over-sampling ratio denoted by n, is
related to Eq. (2) in the following manner:

“)

Thus, an n, of 1 corresponds to the minimum number of
deterministic samples required. Hosder et al. [26] demonstrated
through different stochastic model problems that an n, of 2 is the
optimum value for most problems, which has also been implemented
in the current study.

5. An approach for mixed UQ using evidence theory

This section summarizes the evidence theory traditionally used
for pure epistemic analysis and extends this idea to perform mixed
UQ analysis by converting the aleatory uncertain variables into
Dempster-Shafer structures.

5.1. Fundamentals of evidence theory
Evidence theory introduces two new measures of uncertainty,

belief (Bel), i.e., lower limit of probability and plausibility (Pl), i.e.,
upper limit of probability. Evidence theory application involves the

specification of (U, v,m) where U denotes the universal set, U
denotes the collection of subsets or set of focal elements of U and
m is the basic probability assignment (BPA), which can be viewed
as the belief of the user of how likely it is that the uncertain input
falls within the specified interval. BPA, a value between 0 and 1,
can be assigned for any possible subset of the universal set based
on experimentation or expert opinion. The advantage of this
theory is that it does not assume any particular value within the
interval and nor does it assign a specific distribution to the
interval. Also, Fig. 1 illustrates that the axiom of additivity is not
imposed, as the evidential measure for the occurrence and
negation of an event does not have to sum to unity (Bel(A)+
Bel(A) < 1,PI(A)+PI(A) > 1,Bel(A)+PI(A) = 1) where A represents
the negation of event A.

According to the definition, m(e) denotes the BPA correspond-
ing to subset ¢ of v. Any additional evidence supporting the claim
that the uncertain variable lies within a subset of &, say B C €, must
be assigned another non-zero BPA m(B). m(e) should satisfy
following axioms of evidence theory:

m(e) >0 for any € e .
m(e)=0ifecUand € > .

m(@) =0 where g denotes an empty set.
Sm(e)=1 forall ee v.

In case of multiple sources of uncertainty per variable, the
Dempster rule of combination has been extensively used with a
strong assumption that there is some degree of consistency or
agreement among the opinions of different sources. It has been
proved by Yager [49] that the Dempster's rule completely ignores
the conflict among different sources. Zadeh [50] in his review of
Shafer's book, A Mathematical Theory of Evidence, pointed out that
using Dempster's rule with conflicting evidences results in erroneous
analysis. Thus, in our study, we adopt the mixing or averaging rule
which generalizes the averaging operation used for probability
distributions. The mathematical formulation is given by

-l n
mi_ (A= % wimj(A) 5)

i=1

where mj's are the BPAs for belief structures being aggregated and wj's
are the weights assigned according to the reliability of the sources.
There is abundant literature dedicated to combination rules for the
evidence theory [51,52] which is beyond the scope of this paper.

Once the uncertainty associated with the domain is characterized
by an evidence space in the form of BPAs, an input sample space is
constructed. For example, if y = f(X) where X = [X1,X2, ..., X;] with
the evidence space defined as (X;, x;, m;) for each input uncertainty,
the input sample space is given by

X={X:Xx=[X1,X2,....,Xn] € X7 X X3 X =+ x Xj} (6)
Further for X, the evidence space can be defined by (X, x, my)
where x is developed from the sets contained in the following

equation:

C={€:€=[€1,€2, ..., ER] EX1 X X3 X =+ X Xp} (7)
1 |
1 Bel(4) Uncertainty 1 Bel(A)
1 1
I ~1
1 Pl(A) !

Fig. 1. Schematic of belief and plausibility.
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Under the assumption that the x; are independent, my is
defined as

n
mi(g) if e=¢ey xey x - x€nex
My (€) = 1_1:_[] i(€1) 1 X & X X &p € )
0 otherwise

for subsets € of X.
Once the BPAs for input sample space in Eq. (6) are defined by
Eq. (8), belief and plausibility for the output y can be evaluated as

Bely(e)= > mx(s) €)]

slsf e

Ply(e)= >

sisnf Y ey £

mx(S) (10

As no assumptions were made to calculate these measures, Bel
and Pl provide a more realistic uncertainty structure consistent
with the given evidences. The evidence theory statistics can be
summarized in terms of cumulative belief and plausibility func-
tions (CBF and CPF) and complementary cumulative belief and
plausibility functions (CCBF and CCPF) as shown in Fig. 2.

These measures are calculated on the basis of minimum and
maximum response values for each combination in the input
sample space. Interval optimization approach (mathematical for-
mulation given in Eq. (11)) can be implemented to provide
accurate results for both, the original function or the response
surface based on point-collocation NIPC, which is used as a
surrogate of the original function in this work:

minimize /maximize f(_g)
* — - =
subjectto &, < &< &y an

wheref(?) is the required response value, E)L and E)U correspond
to lower and upper bounds of the standard random variables. The
final step is to calculate the belief and plausibility structures using
the minimum and maximum response values according to
Egs. (9) and (10).

Now, if the uncertainty in output y is characterized by
(Y, o, my), the output uncertainty is summarized using CBF, CPF,
CCBF and CCPF given by the following equations:

CBF=[p.Belx(f "' (Y5)l, peVY (12)
CCBE = [p,Belx(f "'(Y,)], peV (13)
CPF=[p.Plx(f '(YO)L. peV (14)
CCPF=[p,Belx(f " '(Y,), peVY (15)
0oy
0.8 :‘ --ei
& 0.6 . ;
o -
w !
s 0.4 ot
0.2 .--:
- --. CBF
— CPF
0.0
0.6 1.2 1.4 1.6 1.8 2.0

Response value

where Y,={y:yeYandy>p} and Y, ={y:yeVY andy<p).
Detailed explanation of the evidence theory with numerical
examples has been provided by Oberkampf et al. [43], Helton
et al. [53] and Nikolaidis et al. [54].

5.2. Aleatory uncertainty representation in terms of Demspter-
Shafer structures

Although Dempster-Shafer theory is primarily used for epis-
temic uncertainty representation, there may be instances when
aleatory uncertainties are present in the model along with the
epistemic. In that case, one may choose to segregate the aleatory
uncertainties and treat them within an inner loop of nested
sampling in which case we may end up with multiple belief and
plausibility structures as shown by Eldred et al. [31] or one may
choose to discretize the aleatory variables into sets of intervals
according to their respective probability distributions.

In this paper, we focus on the latter option of discretizing the
aleatory variables into sets of intervals and assign BPAs to each
interval corresponding to the probability distribution. Shah et al.
[35] gave a detailed description of the methodology of aleatory
uncertainty representation in terms of Dempster-Shafer struc-
tures. For example, a random variable with uniform distribution
can be divided into n number of intervals with an equal BPA of 1/n
assigned to each sub-interval as can be seen in the right hand side
plot of Fig. 3. Suppose x; is a uniformly distributed variable with
lower and upper bounds as [0.1,0.7] and we discretize the same
into 5 sub-intervals (n=5). The Dempster-Shafer structure for x;
can be given by

X1 = ([0.1,0.22], m), ([0.22, 0.34], m,), ([0.34, 0.46], m5),
...([0.46, 0.58], m,), ([0.58,0.7], ms)

1

where m,:%:g (i=1,2,...,5

In order to discretize a random variable with normal distribution,
we need to characterize the same with a lower bound and an upper
bound. Consider the left plot in Fig. 3 which shows a standard normal
distribution, i.e., with 0 mean (¢ = 0) and 1 standard deviation (¢ = 1).
As per the theory, for a normally distributed random variable with
mean y and o as the standard deviation, 99.7% of the area under the
curve is within y + 36. Hence, this can be treated as a benchmark for
bounding all the normal variables in our analysis. However, the BPA
should be assigned to each sub-interval according to the Gaussian
distribution by solving the definite integral in the following equation:

1 - X—p?

mexp 552 (16)

b
Pla<X<b)= / fX)dx where f(X)=
a (e}

1.0

- CCBF
“ — CCPF

0.8

0.6

0.4

CCBF / CCPF

0.2

0.0 . . -
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Response value

Fig. 2. Example of cumulative and complementary cumulative belief and plausibility functions.
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where a and b denote the upper and lower bounds of the sub-interval
and P(a <X < b) denotes the probability of X between a and b.

Suppose x; is a normally distributed variable with a mean value
of 0.5 (#=0.5) and standard deviation of 0.01 (¢ =0.01). The
lower and upper bounds for x; using y + 3¢ are [0.47,0.53] and we
decide to discretize the same into 3 intervals. The Dempster—
Shafer structure for x, can be given by

X, = ([0.47,0.49], m;), ([0.49,0.51],my), ([0.51, 0.53], m3)
where m; =0.1573,m, =0.6827 and m3 =0.1573

In the current study, the interval discretization is based upon the
convergence study performed by the authors [35] for the minimum
number of intervals required to accurately capture the aleatory
uncertainty in a model problem. The discretization process mainly
depends upon the amount of information needed by the Dempster—
Shafer structures to accurately cover the uncertainty domain.

6. QMU based on evidence theory
6.1. Key measures required for QMU

The key measures of the QMU framework to be developed are
shown in Fig. 4. In this QMU framework, for the whole engineering
system (e.g., aircraft or spacecraft) or for each sub-system, the first
step will be to determine performance metrics (system outputs)
relevant to the systems modeling, which should ideally be functions
of all input parameters including the operating conditions. Then these
metrics will be evaluated at a design condition determined for the safe
and reliable operation of the engineering system. Each of these
metrics F will typically involve some amount of uncertainty Ur due
to the inherent real-life variation of parameters used in physical
models as well as the epistemic uncertainties. The safe and reliable
operation region of the spacecraft or aircraft (performance gates) will
be bounded with a lower bound FL and an upper bound FU for each
metric (i.e., metrics evaluated at the off-design boundaries), which will

0.45 -

99.7%
04 -

0.35 -

03 | A= (ub—Ib)
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also include some uncertainty (Ug, for FL and Uy, for FU) due to the
aforementioned uncertainty sources.

A measure of the distance between the design value of each
performance metric and the lower boundary including the effect of
uncertainties Ur and Ug will give the lower margin My, and the
distance between the upper boundary and the design value of each
performance metric including the effect of uncertainties Ur; and Ur
will give the upper margin Mp. The margins must significantly exceed
any associated uncertainty in order to avoid failure. Using the
uncertainty (U) and the margin (M) information, a QMU metric has
to be developed to quantify and certify the confidence for the safe
operation of the system or each sub system (e.g., confidence ratio, CR)
which is given by

CR= 17)

U
where M is a measure of the margin and U represents a measure of
the uncertainty. The confidence ratio can be used as a degree to which
the operation of a system or each sub-system is considered to lie
within ‘safe’ bounds. As mentioned earlier, margins should exceed any
associated uncertainty thereby stating that a CR sufficiently larger than
1 indicates safe and reliable conditions.

Since there exist two performance gates for each performance
metric (upper and lower bounds), the evaluation of margin and
uncertainty will result in two confidence ratios: (1) confidence ratio
with respect to lower boundary CR;y and (2) confidence ratio with
respect to the upper boundary CRyp. However, it is important to note
that the CR is calculated for each system, sub-system and/or compo-
nent of a sub-system in a particular QMU analysis. The system
confidence ratio CRgygem is represented by the minimum CR which
replicates the worst case scenario as far as system safety is concerned.
Theoretically speaking, there is a family of confidence ratios in a
problem with mixed uncertainties due to the presence of multiple
cumulative distribution functions (CDFs) per p-box. The bounding
CDFs (lowest and highest) of the p-box are used to calculate the
95% confidence interval in uncertainty quantification [29]. Similar
methodology is used to calculate the confidence ratio for the lower
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Fig. 4. Schematic of key measures used in a QMU framework.
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and upper boundaries respectively. Further, the minimum value of the
two CRs (CRyy and CRyp) will result in the worst case scenario and
a reliable value to carry out the performance assessment and cert-
ification.

Mathematically, the two confidence ratios can be formulated as
follows:

Muyp

M
Ruw =y i

and CRyp =
ULW upP

(18)
In Eq. (18), similar to the measure of the margins, Uyp is a function of
performance metric and upper boundary uncertainties, i.e., Ur and Ugy
whereas Uy is a function of performance metric and lower boundary
uncertainties, i.e., Ur and Ug. The system confidence ratio can be
chosen to be the smallest out of the two performance gates. Thus, the
minimum confidence ratio from among CRyy and CRyp is likely to
tend towards the failure region and can be considered as the confi-
dence ratio for the system.

6.2. QMU framework based on evidence theory

This section formulates the QMU framework in terms of evidence
theory uncertainty measures, belief and plausibility. The usage of DSTE
for QMU is preferred especially in situations where multiple sources of
uncertainties are encountered for epistemic variables. If this is not the
case and we have single source of uncertainty for both probabilistic
and epistemic variables, then one can consider to perform mixed
uncertainty quantification using methods like second order probabil-
ity. When a problem formulation consists of probabilistic distributions
along with Dempster-Shafer structures for epistemic variables, the
discretization procedure as mentioned in Section 5.2 should be used
for representing aleatory variables in terms of well-characterized
epistemic variables.

Based on this discussion, four cases are presented for the formula-
tion of uncertainty (U) and margin (M) calculations; (1) no uncer-
tainty, (2) pure epistemic uncertainty, (3) pure aleatory uncertainty
and (4) mixed (aleatory-epistemic) uncertainty. As this paper focuses

Table 1
Formulations for uncertainty calculation with respect to upper boundary.

Type of uncertainty Uyp1(FU)  Uyp2(FU) Uyps(F) Uypa(F)
No uncertainty FU FU F F

Pure epistemic Belp_os Plp_1-pp2 Belp_14p2  Plp—os
Pure aleatory FUp_os FUp_a-pp  Froaipe Fp_os
Mixed aleatory-epistemic  Belp_qs Plp—1-y)2 Belp—1+pp2  Plp—os

Table 2
Formulations for uncertainty calculation with respect to lower boundary.

on QMU using evidence theory for mixed UQ, the epistemic variables
will be considered with Dempster-Shafer structures. Thus, the pure
epistemic and mixed uncertainty analysis results will be quantified in
terms of CBF and CPF as explained in Section 5.1. For pure aleatory
analysis, the response surface is sampled over a large number of Latin
Hypercube samples and the uncertainty is quantified in terms of
cumulative distribution functions (CDFs).

The uncertainty calculation parameters with respect to upper
and lower boundaries are provided in Tables 1 and 2, and the
following equations:

Uup = \/(Uum —Uup2)* +(Uups — Uupa) (19)
Uw = \/(ULW1 —Uw2)* + (Urws — Urwa)? (20)
Myp = [Myp1 —Myp2| and  Mpw = | Miw1 —Miwa | (21)

Table 3 indicates the metric (for the design condition or the off-
design boundaries) to be adopted corresponding to the type of
uncertainty encountered for the calculation of upper and lower
margins. Mathematical formulations for Myp and My, are given in
Eq. (21). The subscript P corresponds to the belief/plausibility/
probability level whichever is applicable and y is the specified
confidence level (e.g., y=0.95).

The confidence ratio for the system can then be evaluated using
Egs. (18)-(21):

(22)

CRsystem = min{CRw, CRyp} = mm{w @}

Uw’ Uup

7. Analytical QMU model problem

In order to demonstrate the implementation of evidence theory
for mixed UQ using stochastic expansions in QMU methodology,
we present a model problem for coupled systems (System 1 and
System 2, see Fig. 5) represented by analytical non-linear func-
tions. This section will be segregated into 3 subsections: first
section will describe the design condition for both systems, second
section will describe the boundaries/performance gates for System
1 and the third section will describe the boundaries/performance
gates for System 2.

7.1. UQ for design condition of the QMU model problem

The mathematical structure of the design condition for Systems
1 and 2 is shown in Fig. 5. Here, F; and F, represent the outputs for
Systems 1 and 2 respectively. System 1 comprises of Rosenbrock
function with 4 uncertain variables (x;,i =1, 2, 3,4) and System 2 is
the McCormick function which has shared input variables x; and
X, with System 1. The mixed uncertainty information for all the

Type of uncertainty Upw1(FL)  Upws(FL) Uws3(F) Uwa(F) variables is given in Table 4.
- It is clear that we need to propagate mixed uncertainty using DSTE
No uncertainty FL fL F F through discretization procedure described in Section 5.2. A fourth-
Pure epistemic Plp_os Belp_1p2 Plo_a-pp2 Belp_os . .
Pure aleatory Flo—os  Floisnn  Fooupp  Fros order chaos expansion was chosen to model the uncertainty propaga-
= =1+ =(0-7 =0. : ; i i i
Mixed aleatory-epistemic  Plp_ g5 Belp_1p2 Plo_a_p2  Belo_os tion with the NIP; method, With an ove.r—.samphng ‘ratlo of 2 .and
number of uncertain variables of 4, 140 original function evaluations
Table 3
Formulations for margin calculation.
Type of uncertainty Myp1(FU) Muyp> (F) Mywn1(F) Myw2(FL)
No uncertainty FU F F FL
Pure epistemic Plo_ -y Belp_ 14p),2 Plp_1-p2 Belp_ (14,2
Pure aleatory FUp_ -2 Fp— 42 Fp—-pp2 FLp_ (1492
Mixed aleatory-epistemic Plp_ -y Belp_ (15p)2 Plp_ 1,2 Belp_ (14,2
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are required for an accurate stochastic response surface according to
Eq. (4). The inexpensive response surface replaces the deterministic
model which proves to be computationally efficient in view of
repetitive simulations required for DSTE analysis. This advantage is
substantial for large scale computational models such as aerospace
simulations including high fidelity models.

Based on the analysis presented by Shah et al. [35] for aleatory
uncertainty discretization, the uniformly distributed variable x; is

7.3. Performance gates and UQ for system 2

There exists an upper boundary for System 2 in the form of
Dakota textbook problem [55] with 2 uncertain variables which is
given by

FUgys2 = (61 — D* + (22— 1)* (24)

Output 1 Output 2
. //—-9 F: = f =+ IFTIO
F=31-x) +100x,, -xy —T |

i=1

System 1

Rosenbrock Function

f=sin(x, +x,) + (%, —x,)* —1.5x, +2.5x, +1
System 2

McCormick Function

Fig. 5. Mathematical QMU problem.

Table 4
Uncertainty information for the mathematical QMU problem.

Variable Distribution Uncertainty information

X1 Uniform [-0.5, 0.8]

X2 Epistemic Source 1: [-0.5, —0.1] 50%, [0.1, 0.4] 50%
Source 2: [0.0, 0.5] 33.34%, [ 0.4, 0.2] 33.33%, [-0.1, 0.1] 33.33%
Source 3: [0.25, 0.35] 35%, [ 0.45, —0.29] 65%

X3 Normal N(0.25,0.03)

X4 Epistemic Source 1: [0.2, 1.0] 30%, [ - 1.0, 0.4] 70%

Source 2: [—0.2, 0.3] 33.34%, [ 0.5, —0.15] 33.33%, [0.15, 0.9] 33.33%

segregated into 30 different intervals with an equal BPA of 1/30 for
each sub-interval and the normally distributed variable is discre-
tized into 20 intervals with BPA assigned to each sub-interval
according to the Gaussian distribution shown in Eq. (16). The DSTE
analysis is carried out with the composite Dempster-Shafer
structure for mixed UQ for the design condition (see Fig. 6).

7.2. Performance gates and UQ for system 1

In this example problem, System 1 is considered to be bounded by
both, upper and lower boundaries. The lower boundary consists of a
normally distributed parameter, treated as a pure aleatory limit
which provides a single CDF and the upper boundary for System
1 is represented by a 2 variable Booth function which is given by
FUgs1 = (V1 +2%2 =7 + 2y, +X2 =5 23)
where FUgys; denotes the upper boundary for System 1. As can be seen
from Eq. (23), the upper boundary has a shared input variable in the
form of x,. The input uncertainty information for the performance
gates is given in Table 5.

As the variable x, is an epistemic variable with a Dempster—
Shafer structure and y; represents aleatory uncertainty, uncer-
tainty is quantified using DSTE with discretization process for the
aleatory variable. In this case, normally distributed variable y; is
discretized into 75 intervals to carry out the DSTE analysis for the
composite Dempster-Shafer structure using a 2nd order chaos
expansion (see Fig. 7). Thus, only 12 original function evaluations
were required with an over-sampling ratio of 2.

Eq. (24) represents the same scenario as in the upper boundary
for System 1. It shares an input variable x; with the design
condition, uncertainty data for which is shown in Table 4. z, is
an epistemic variable with a Dempster-Shafer structure from a
single source as listed in Table 6.

As the upper boundary for System 2 is also characterized by
mixed uncertainty, DSTE analysis is carried out by segregating the
uniformly distributed variable x; into 75 intervals with an equal
BPA to each sub-interval (see Fig. 8). A 4th order chaos expansion
with over-sampling ratio of 2 required 30 original function
evaluations.

The surrogate models for each metric, including the perform-
ance gates, are compared to the original function output statistics in
Figs. 6-8. It is evident that the NIPC response surfaces are accurate.
Computational efficiency is also achieved in terms of original function
evaluations which can be compared in Table 7.

7.4. Quantification of margins and uncertainties for QMIU model
problem

A confidence level of y=0.95 is chosen for the QMU model
problem. For better understanding, Fig. 9 gives a pictorial presentation
for calculation of uncertainties and margins for System 1 with the
specified confidence level. For System 1, QMU analysis based on upper
and lower boundaries is summarized in Table 8.

Similarly for System 2, QMU analysis is solely based on the upper
boundary which is summarized in Table 9. Thus, the system con-
fidence ratio can be given as CRgysiern = Min{CRgys1, CRyy0} = 0.8319.
We see that the confidence ratio for the whole system is governed by
that of System 1, in particular the confidence ratio related to the lower
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Fig. 6. Design condition for the QMU model problem. (a) System 1: design condition. (b) System 2: design condition.

Table 5
Input uncertainty information for the performance limits of System 1.

Lower boundary: Single parameter with N(—100.0,5.5)

Upper boundary
Variable Distribution Uncertainty information
Y1 Normal N(30.0,2.5)
X2 Epistemic Source 1: [-0.5, —0.1] 50%, [0.1, 0.4] 50%
Source 2: [0.0, 0.5] 33.34%, [ - 0.4, 0.2] 33.33%, [ 0.1, 0.1] 33.33%
Source 3: [0.25, 0.35] 35%, [—0.45, —0.29] 65%
a b
1.2 4 1.2 -
1 4 1
0.8 - 0.8
w
o
w (8]
8 0.6 - o 0.6 +
8 Plausibility
0.4 0.4
—— Original function Belief
i | —— Original function Plausibility
02 02 - - - NIPC 2nd order Belief
=== NIPC 2nd order Plausibility
0 T T T 1 0 T T 1
-140 -120 -100 -80 -60 1000 3000 5000 7000
F Lsys1 F Usys1

Fig. 7. Performance gates for System 1. (a) System 1: lower bound. (b) System 1: upper bound.

performance boundary and associated uncertainties including the Table 6
design point. The parameter CR basically helps the decision-maker Uncertainty information for upper boundary of System 2.
in risk assessment and risk mitigation. Post-analysis may be carried

out on the basis of the confidence ratio parameter to make the design Variable Distribution Uncertainty
robust, which will be measured by the improvement in the confi- X Uniform [-0.5, 0.8]
dence ratio. z Epistemic [6.0, 6.5] 50%, [6.3, 6.75] 30%, [5.9, 6.2] 20%
8. Multidisciplinary analysis of a supersonic civil transport demonstrate QMU using DSTE with stochastic expansions. The inte-
grated multidisciplinary optimization object system (IMOO) [56],
A multidisciplinary analysis system for the high speed civil trans- analysis tool used for this model problem, is a tool set designed to

port (HSCT) was selected as the 2nd model problem in order to address many issues for next generation vehicle applications. It utilizes
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an object-oriented integration framework that allows users to effi-
ciently link high fidelity analysis modules. The problem setup time is
significantly reduced by simplifying the definition of interdisciplinary
coupling, allowing the creation of complex data objects and eliminat-
ing laborious manual data conversion. The IMOO system succeeds in
sharing complex data by utilizing an object-oriented approach in
which upstream modules create objects that are used by downstream
modules on demand. Both the data and the methods reside in the
object and downstream modules may request the data when needed.
An example of this is mesh generation. IMOO implements automatic
mesh generation and morphing through advanced parametric geo-
metry and grid technology for multidisciplinary modeling [57]. M4
Engineering has developed a parametric grid morphing tool, geometry
manipulation by automatic parameterization (GMAP [58]), and a

1.2
1 4
0.8 Plausibility
w
i N
(&)
E 0.6 - Belief
3 -
0.4 -
Original function Belief
0.2 - Original function Plausibility
' - - - NIPC 4th order Belief
- = = NIPC 4th order Plausibility
0 T T T 1
500 700 900 1100 1300
FUsysZ
Fig. 8. Performance gate for System 2: upper bound.
Table 7

Computational efficiency of NIPC methodology.

parametric finite element analysis (FEA) model generator for internal
structures (RapidFEM [59]). These tools are integrated into the frame-
work environment to quickly analyze FEA/CFD cases, morph geometry,
re-mesh, apply loads, and generate useful results. Thus, the IMOO
system allows configurations to be rapidly assess and different
numerical optimization techniques be used to help determine the
optimal design.

8.1. Description of the deterministic model

For the current study, the analysis configuration selected is the
HSCT [60] as shown in Fig. 10. The design variables used in the
IMOO system model of the HSCT include the wing area, aspect
ratio, sweep angle, taper ratio, span-wise location of break chord,
leading edge position of break, break chord, and tip chord ratio
(Fig. 11).

For the QMU demonstration, a modified version of the supersonic
vehicle design process was chosen (shown in Fig. 12). The five
modules considered are: (1) geometry, (2) aerodynamics, (3) propul-
sion, (4) structures and (5) range performance (Brequet range). The
standard design structure matrix shows the analysis modules as blue
boxes on the diagonal of the matrix, and the data items used by or
generated by the modules are shown as yellow boxes. The far left
column of yellow boxes represents inputs to the entire process, and
the far right column represents outputs from the process. The outputs
from a particular module are placed on the same row as the module,
and the inputs are in the same column (e.g., propulsion performance
is an output of the propulsion module and an input to the Breguet
range module). In general, module execution is shuffled to get as
much information as possible into the upper-right triangle of the
matrix, which represents a feed-forward path, where the module
generating the data is executed prior to the module using the data.
Feedback paths are possible, but require special consideration (e.g.,
iteration to convergence) and hence, will not be included in this
demonstration.

In this process, the geometry module takes the geometric variables
and generates (through GMAP) an updated CFD model (via mesh

Performance Polynomial Original function  Original function morphing), a FEM mesh (through parametric geometry and meshing),
metric order evaluations evaluations using NIPC and information for the propulsion module. Fig. 13(a) shows the initial
- - geometry used to develop the baseline aerodynamic and structural
Design point: 4 47 967 140
System 1 meshes.
Upper bound: 2 560 12 The aerodynamics module calculates the vehicle aerodynamic
System 1 coefficients and distributed pressures at various flight conditions for
Design point: 4 39219 140 use in performance simulation and load calculations. In order to
System 2 expedite aerodynamic analyses, the current implementation of the
Upper bound: 4 180 30 . e .
System 2 aerodynamics module utilizes PANAIR [61] to compute aerodynamic
loads. PANAIR (panel aerodynamics) solves the linearized potential flow
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Fig. 9. Demonstration for calculation of uncertainties and margins for System 1. (Note that the figures are not drawn to scale to increase the clarity.)
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problem for subsonic and supersonic regimes using a higher-order
panel method [62-64]. Fig. 13(b) shows the half model used for
aerodynamic analysis.

The propulsion module utilizes the numerical propulsion system
simulation (NPSS) [65] to calculate the propulsion performance

Table 8
System 1: QMU analysis metrics.

Performance gate Margin Uncertainty CR
Lower 91.3959 109.859 0.8319
Upper 2124.765 1292.169 1.6443
Table 9
System 2: QMU analysis metrics.
Performance gate Margin Uncertainty CR
Upper 571.9426 339.7115 1.6836

Fig. 10. Generic HSCT configuration.

+ High Speed Civil Transport (HSCT)
+ Geometric Design Variables

* S (wing projected area)

* AR (aspectratio)
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(specific fuel consumption etc.) for use in the Breguet range module.
NPSS is a comprehensive propulsion simulation tool capable of
accurately predicting aerothermodynamic behavior of jet engines in
various flight regimes.

The structural module, using a NASTRAN optimization, calculates
loads and structural sizing to estimate the takeoff gross weight
(TOGW). The design load case simulated corresponds to a 1.5-g pull
up (consistent with FAR part 25 criteria). The Breguet range module
computes the range performance for the supersonic vehicle based
upon the outputs from the upstream modules.

8.2. Description of the stochastic model

8.2.1. Design

For the HSCT model problem, two modules (geometry and aero-
dynamics) have been chosen to include uncertain input parameters.
The schematic of the stochastic model for the HSCT problem is shown
in Fig. 14. The geometry module has 2 uncertain input parameters:
wing sweep angle and the wing taper ratio. The Mach number and the
angle of attack, being the two important parameters in aerodynamic
analysis, have been chosen as the source of uncertainty for the design
of supersonic vehicle. The uncertainty information for all the para-
meters is summarized in Table 10.

Given the input uncertainty, the range and the drag coefficient
are considered as the performance metrics which are related to
multiple systems, each subject to inherent and epistemic uncer-
tainties. The Range plays an important role in the design of a civil
transport vehicle and coefficient of drag is one of the key design
parameters that affects the vehicle performance.
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Fig. 11. HSCT with geometric design variables.
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Fig. 12. Supersonic vehicle design structure matrix. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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8.2.2. Performance gates for the range

In an aircraft design, a minimum value of range for which the
aircraft should fly is specified. For demonstration purposes, we
select a lower boundary for the range as 2700 nautical miles (nmi)
with no uncertainty.

8.2.3. Performance gates for the coefficient of drag

In aircraft design, a maximum value of drag coefficient may be
used as a criteria to limit engine selection size and reduce fuel
economy. In present analysis, drag coefficient is constrained by an
upper limit of 0.0085 with no uncertainty.

8.3. Uncertainty quantification using DSTE

8.3.1. Design

UQ analysis for the HSCT design condition is carried out using the
DSTE approach with stochastic expansions. As there are 4 uncertain
variables in the system, according to Eq. (2), 30 deterministic evalua-
tions were required with a n, of 2 for a second order PCE. The taper

a

Fig. 13. HSCT: geometry and aerodynamics model. (a) HSCT base geometry (shown
without vertical tail). (b) HSCT PANAIR model (wing body wake).

Modules chosen to Output
include uncertain Parameters

Uncertain | i input parameters '
parameters 1) The Range
/ 2) Coefficient

1) Wing Sweep Angle
2) Wing Taper Ratio

of Drag
Uncertain
parameters

~ 1) Mach Number
2) Angle of Attack

Fig. 14. Stochastic model for HSCT.

Table 10
HSCT uncertain parameters.

ratio was discretized into 23 sub-intervals and the Mach number and
sweep angle were discretized into 22 sub-intervals each to obtain the
belief and plausibility measures. The CBF and CPF for the output
quantities, range and coefficient of drag are shown in Fig. 15.

To assess the accuracy of the response surface for range and
coefficient of drag, 10 sample points were chosen in the uncertainty
domain at which the difference between the actual model and the
surrogate (i.e., the response surface) were calculated. It was found that
the surrogate models for the range and coefficient of drag, based on a
second order PCE, were accurate with the highest mean error being
approximately 0.05%. As a result of this error analysis, the QMU
analysis was performed using the second order expansion.

8.3.2. Performance limits

As mentioned before, no uncertainty was considered in case of
performance gates for both the output quantities. Thus, they are
treated as being constant which will correspond to the row with
‘No uncertainty’ in Tables 1-3.

8.4. Quantification of margins and uncertainties for HSCT

Now that the uncertainties are quantified in the design condition,
the next step is to perform the QMU analysis on HSCT. Similar to the
previous example problem, a confidence level of y=0.95 is chosen for
the HSCT problem. The design metric for the range of the supersonic
vehicle is represented by mixed uncertainty whereas the lower
performance limit is attributed with no uncertainty. Using the
equations and tables given in Section 6.2, the uncertainty and margin
calculations are performed and summarized in Table 11 in terms
of CR.

Similarly, the drag coefficient is also represented with mixed
uncertainty whereas the upper performance limit has no uncer-
tainty. The QMU analysis results are summarized in Table 12.

Using Eq. (22), system wide confidence ratio is the minimum
CR from among the two output quantities under consideration.
The minimum value is chosen as it indicates the weakest link in
the system design. In present analysis, the system wide confidence
ratio is obtained as 1.289 for coefficient of drag, indicating that the
margins are greater than the uncertainties. In case the uncertain-
ties are greater than or equal to the margins (i.e., CR<1), a re-
design of the system, performance limits or both may be required
to make the system more reliable.

9. Conclusion

The objective of this paper is to implement Dempster-Shafer
Theory of Evidence (DSTE) in the presence of mixed uncertainty to
the system reliability and performance assessment of complex engi-
neering systems through the use of quantification of margins and
uncertainties (QMU) methodology. Specifically, uncertainty quantifica-
tion (UQ) has been used as a tool of certification to decide whether a
system is likely to perform safely and reliably within design specifica-
tions. Importance and contribution of the current study lies in creation
of a novel QMU framework in terms of Dempster—Shafer struct-
ures (belief and plausibility) which can be used for performance

Variable Distribution Uncertainty information
Mach number ([\71) Normal N(2.0,0.02)
Angle of Attack (&) Epistemic Source 1: [2.4, 2.45] 20%, [2.43, 2.56] 50%, [2.51, 2.6] 30%
Source 2: [2.58, 2.6] 10%, [2.5, 2.55] 60%, [2.45, 2.49] 30%
Wing sweep angle (A) Normal N(68.0,1.0)
Wing taper ratio (1) Uniform [0.06, 0.1]
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Fig. 15. UQ for HSCT using DSTE. (a) HSCT: range. (b) HSCT: coefficient of drag.

Table 11
HSCT range: QMU analysis metrics.

Performance gate Margin Uncertainty CR
Lower 611.951 289.347 21149
Table 12
HSCT drag coefficient: QMU analysis metrics.
Performance gate Margin Uncertainty CR
Upper 5.085 x 107* 3.947 x10°* 1.289

assessment of a system under uncertainty. Specifically, DSTE is used
for uncertainty quantification to address the possibility of multiple
sources and intervals for epistemic uncertainty characterization.
Furthermore, the DSTE is utilized for mixed uncertainty quantification
by discretizing the aleatory probability distributions into optimum sets
of intervals and treating them as well-characterized epistemic vari-
ables. In addition, the response quantities of interest for design perf-
ormance and boundaries are represented with stochastic surrogates
based on non-intrusive polynomial chaos (NIPC) to reduce the
computational expense of implementing DSTE for uncertainty quanti-
fication of high-fidelity complex system models.

The first QMU model problem consisted of a complex system of
nonlinear functions which are typically used in numerical optimiza-
tion studies. The QMU methodology using the evidence theory is
demonstrated on the coupled analytical system of equations, which
have shared inputs with their respective performance boundaries. In
order to demonstrate the usage of evidence theory in propagating
mixed uncertainties, different combinations of performance metrics
and limits were adopted in the QMU analysis.

The second model problem was multi-disciplinary analysis of a
high speed civil transport for the demonstration of the QMU meth-
odology for complex engineering systems in aerospace applications.
The drag coefficient and the range performance were studied as the
output quantities which are considered critical during an aircraft
design process. Second order NIPC expansions were used as surrogates
for both performance metrics, which proved to be computationally
efficient in quantifying the margins and uncertainties using evidence
theory.

Overall, the proposed approach outlined a computationally effi-
cient framework for quantifying margins and uncertainties with DSTE
and stochastic expansions. Two model problems were utilized to
demonstrate the QMU methodology, which included various types of
uncertainty representations for the performance metrics and limits.

The results indicate the potential of the proposed QMU approach for
the evaluation of safety and reliability of complex engineering systems
in terms of efficiency and effectiveness.
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