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The objective of this study was to apply a recently developed uncertainty quantification 

framework to the multidisciplinary analysis of a reusable launch vehicle (RLV). This 

particular framework is capable of efficiently propagating mixed (inherent and epistemic) 

uncertainties through complex simulation codes. The goal of the analysis was to quantify 

uncertainty in various output parameters obtained from the RLV analysis, including the 

maximum dynamic pressure, cross-range, range, and vehicle takeoff gross weight. Three 

main uncertainty sources were treated in the simulations: (1) reentry angle of attack 

(inherent uncertainty), (2) altitude of the initial reentry point (inherent uncertainty), and (3) 
the Young’s Modulus (epistemic uncertainty). The Second-Order Probability Theory 

utilizing a stochastic response surface obtained with Point-Collocation Non-Intrusive 

Polynomial Chaos was used for the propagation of the mixed uncertainties. This particular 

methodology was applied to the RLV analysis, and the uncertainty in the output parameters 

of interested was obtained in terms of intervals at various probability levels. The 

preliminary results have shown that there is a large amount of uncertainty associated with 

the vehicle takeoff gross weight. Furthermore, the study has demonstrated the feasibility of 

the developed uncertainty quantification framework for efficient propagation of mixed 

uncertainties in the analysis of complex aerospace systems. 

Nomenclature 

C = Mass fraction  

h = Enthalpy (J/kg) 

Le = Lewis number 

n = Number of random variables 

p = Polynomial order of total expansion 

Pr = Prandtl number 

q = Maximum dynamic pressure 

RN  =  Radius of curvature (m) 

α = Reentry angle of attack 

µ =  Mean 

ξ =  Standard random variable 

aξ
r  = Standard aleatory uncertain variable vector 

eξ
r  = Standard epistemic uncertain variable vector 

ρ = Density (kg/m
3
) 

σ = Standard deviation 

σ
2
 =  Statistical variance  

Ψ = Random basis function 
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I. Introduction 

odeling and simulation technologies have advanced over the years with many intelligent, cost 

saving strategies.  These technologies have assisted in the analysis and development of many 

complex, integrated systems.  More specifically, the field of multi-disciplinary analysis and optimization 

(MDAO) of space systems has taken advantage of many of these technologies.  Some of these 

technologies include design space exploration, variable-fidelity capabilities, and uncertainty and risk 

analysis. Furthermore, the successes of future spacecraft missions fundamentally depend on the 

advancement of these technologies. 

The uncertainties in various parameters, operating conditions, geometry, and the physical models used 

in spacecraft system simulations can significantly affect the performance of the overall system. The 

uncertainty information obtained for the system responses can also be used in the assessment of the 

system robustness and/or the reliability and for decision-making in mission planning. Therefore, the 

quantification of uncertainties in complex integrated space systems is a key technology that warrants 

research and development. This challenging task requires the consideration of the propagation of various 

types of uncertainty (inherent and epistemic) between each subsystem and to the output quantities of 

interest. Several traditional uncertainty sampling methods (Monte Carlo, etc.) currently exist but have 

shortcomings due to their computational expense. There exists a need to be proficient in applying 

uncertainty methods to sophisticated systems involving high-fidelity analyses.  Efficient application of 

uncertainty methods to these systems is crucial for providing reasonable turn-around times with 

computational results accompanied with various statistical metrics obtained with desired accuracy. In the 

current study, Second-Order Probability Theory utilizing Point-Collocation Non-Intrusive Polynomial 

Chaos (NIPC)
1
 will be used for the propagation of mixed (aleatory-epistemic) uncertainties.

2-3
 In general, 

the NIPC methods, which are based on the spectral representation of uncertainty, are computationally 

more efficient than traditional Monte Carlo methods for moderate number of uncertain variables and can 

give highly accurate estimates of various uncertainty metrics. In addition, they treat the deterministic 

model (e.g, an RLV system) as a black box and the uncertainty information in the output is approximated 

with a polynomial expansion, which is constructed using a number of deterministic solutions, each 

corresponding to a sample point in random space. Therefore, the NIPC methods become a perfect 

candidate for the uncertainty quantification in the numerical solutions which are computationally 

expensive and complex.  

Previously, M4 Engineering developed the Multidisciplinary Optimization Object Library (MOOL) as 

part of a phase II SBIR effort funded by NASA Glenn Research Center. An object-oriented 

Multidisciplinary Analysis Optimization (MDAO) framework is an automated analysis, optimization, and 

virtual test system that allows (1) consideration of interactions between disciplines during analysis, (2) 

automated execution of multiple analysis codes on different computers, (3) incorporation of test data to 

improve accuracy of analysis models, and (4) optimization of vehicle parameters to achieve superior 

performance. In the MOOL project, M4 developed a suite of common MDAO objects that can be used in 

multiple framework environments to handle common tasks encountered in integration of multidisciplinary 

analysis and optimization problems.  Specifically, as an example application, a high-alpha RLV system 

was integrated and analyzed. In the current study, the same MOOL high-alpha RLV system will be 

implemented for uncertainty quantification (UQ) analysis. 

M4 Engineering and Missouri S&T have partnered to develop an UQ framework. This framework is 

built upon an Uncertainty Module previously developed by M4 Engineering.  One of the key objectives of 

this project is to implement the Non-Intrusive Polynomial Chaos (NIPC) expansion methods within the 

framework.  This framework was developed in Python and primarily serves as an outer analysis layer. 

The utility of this framework is through the efficient application of NIPC methods to any user-specified 

system, which can be executed from a command line. In this paper, preliminary mixed UQ results 

obtained for the analysis of an RLV system are presented. 

 In the following section, a brief description of the various types of uncertainties found in complex 

numerical simulations is given. In Section III, a brief overview on the theory behind Point-Collocation 

M
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Non-Intrusive Polynomial Chaos will be given. Next in Section IV, an efficient approach to propagate 

mixed aleatory and epistemic uncertainties through a simulation code using NIPC and Second-Order 

Probability will be outlined. The uncertainty approach will first be applied to the Fay-Riddell relation for 

approximating stagnation point heat transfer on a blunt body (Section V). Due to the low computational 

costs of evaluating the Fay-Riddell relation, the results will also be compared to Monte Carlo (MC) 

simulation results which will assess the validity of the proposed uncertainty quantification approach. In 

Section VI, the MOOL RLV system will be described in detail. In Section VII, the approach for aleatory 

and epistemic uncertainty quantification using Point-Collocation NIPC and Second-Order Probability will 

be applied to the MOOL RLV system to quantify uncertainties in various performance outputs of the 

system. Finally in Section VIII, all relevant conclusions and future work plans will be given.    

 

 

II. Types of Uncertainties in Computational Simulations 
 

 As described in Oberkampf et. al.,
4
 there can be three different types of uncertainty and error in a 

computational simulation: (1) aleatory uncertainty, (2) epistemic uncertainty, and (3) numerical error. The 

term aleatory uncertainty describes the inherent variation of a physical system. Such variation is due to 

the random nature of input data and can be mathematically represented by a probability density function if 

substantial experimental data are available for estimating the distribution (uniform, normal, etc.). The 

variation of the free-stream velocity or manufacturing tolerances can be given as examples for aleatory 

uncertainty in a stochastic external aerodynamics problem. The aleatory uncertainty is sometimes referred 

as irreducible uncertainty due to its nature. 

 Epistemic uncertainty in a non-deterministic system originates due to ignorance, lack of knowledge, or 

incomplete information (such as the values of transport quantities in high temperature hypersonic flow 

simulations). The key feature of this definition is that the fundamental cause is incomplete information of 

some characteristics of the system. As a result, an increase in knowledge or information can lead to a 

decrease in the epistemic uncertainty. Therefore, epistemic uncertainty is referred to as reducible 

uncertainty. As shown by Oberkampf and Helton,
5
 modeling of epistemic uncertainties with probabilistic 

approaches may lead to inaccurate predictions in the amount of uncertainty in the responses due to the 

lack of information on the characterization of uncertainty as probabilistic. One approach to characterize 

the epistemic uncertain variables is to use intervals. The upper and lower bounds on the uncertain variable 

can be prescribed using either limited experimental data or expert judgment.  

 Numerical error is defined as a recognizable deficiency in any phase or activity of modeling and 

simulation that is not due to the lack of knowledge. If errors cannot be well-characterized, then they must 

be treated as part of the epistemic uncertainties. The discretization error in spatial or temporal domain 

originating from the numerical solution of partial differential equations that describes a physical model in 

a discretized computational space (mesh) can be given as an example of numerical uncertainty. 

 

III. The Point-Collocation NIPC 
 

The polynomial chaos is a stochastic method, which is based on the spectral representation of the 

uncertainty. An important aspect of spectral representation of uncertainty is that one may decompose a 

random function (or variable) into separable deterministic and stochastic components. For example, for 

any random variable (i.e., α∗
) in a stochastic analysis and design problem, we can write, 

  

α∗(
r 
x ,
r 
ξ ) = α i(

i= 0

P

∑ r 
x ) Ψi(

r 
ξ ),                                                                     

where   α i(
r 
x ) is the deterministic component and   Ψi(

r 
ξ ) is the random basis function corresponding to the 

i
th
 mode. Here we assume α∗

 to be a function of deterministic independent variable vector   
r 
x  and the n-

(1)
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dimensional random variable vector   

r 
ξ = (ξ1,...,ξn ) , which has a specific probability distribution. The 

discrete sum is taken over the number of output modes, 

P +1=
(n + p)!

n!p!
, 

which is a function of the order of polynomial chaos (p) and the number of random dimensions (n). The 

basis function ideally takes the form of multi-dimensional Hermite Polynomial to span the n-dimensional 

random space when the input uncertainty is Gaussian (unbounded), which was first used by Wiener
6
 in 

his original work of polynomial chaos. Legendre (Jacobi) and Laguerre polynomials are optimal basis 

functions for bounded (uniform) and semi-bounded (exponential) input uncertainty distributions 

respectively in terms of the convergence of the statistics. Different basis functions can be used with 

different input uncertainty distributions (See Xiu and Karniadakis
7
 for a detailed description), however 

the convergence may be affected depending on the basis function used. The detailed information on 

polynomial chaos expansions can be found in Walters and Huyse
8
 and Hosder and Walters.

1 

To model the uncertainty propagation in computational simulations via polynomial chaos with the 

intrusive approach, all dependent variables and random parameters in the governing equations are 

replaced with their polynomial chaos expansions. Taking the inner product of the equations, (or projecting 

each equation onto i
th
 basis) yield P + 1 times the number of deterministic equations which can be solved 

by the same numerical methods applied to the original deterministic system. Although straightforward in 

theory, an intrusive formulation for complex problems can be relatively difficult, expensive, and time 

consuming to implement. To overcome such inconveniences associated with the intrusive approach, non-

intrusive polynomial chaos formulations have been considered for uncertainty propagation. 

The collocation based NIPC method starts with replacing the uncertain variables of interest with their 

polynomial expansions given by Equation 1. Then, P+1 vectors (
  

r 
ξ i = ξ1,ξ2,...,ξn{ }

k
, k = 0,1,2,...,P ) are 

chosen in random space for a given PC expansion with P +1 modes and the deterministic code is 

evaluated at these points. With the left hand side of Equation 1 known from the solutions of deterministic 

evaluations at the chosen random points, a linear system of equations can be obtained: 

  

Ψ0(
r 
ξ 0) Ψ1(

r 
ξ 0) L ΨP (

r 
ξ 0)

Ψ0(
r 
ξ 1) Ψ1(

r 
ξ 1) L ΨP (

r 
ξ 1)

M M O M

Ψ0(
r 
ξ P ) Ψ1(

r 
ξ P ) L ΨP (

r 
ξ P )

 

 

 
 
 
 

 

 

 
 
 
 

α0

α1

M

αP

 

 
  

 
 
 

 

 
  

 
 
 

=

α*(
r 
ξ 0)

α*(
r 
ξ 1)
M

α*(
r 
ξ P )

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

The spectral modes (α k ) of the random variable α*
are obtained by solving the linear system of 

equations given above. Using these, mean ( µ
α* ) and the variance (σ

α*

2
) of the solution can be obtained by 

  

µ
α* = α0

σ
α*

2 = α i

2 Ψi

2(
r 
ξ )

i=1

P

∑
 

The solution of the linear problem given by Equation 3 requires P +1 deterministic function evaluations. 

If more than P +1 samples are chosen, then the over-determined system of equations can be solved using 

the Least Squares method. Hosder et al.
9
 investigated this option by increasing the number of collocation 

points in a systematic way through the introduction of a parameter np defined as 

(2) 

(3) 

(4) 
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np =
number of samples

P +1
. 

 In the solution of stochastic model problems with multiple uncertain variables, they have used np = 1, 

2, 3, and 4 to study the effect of the number of collocation points (samples) on the accuracy of the 

polynomial chaos expansions. Their results showed that using a number of collocation points that is twice 

more than the minimum number required (np=2) gives a better approximation to the statistics at each 

polynomial degree. This improvement can be related to the increase of the accuracy of the polynomial 

coefficients due to the use of more information (collocation points) in their calculation. The results of the 

stochastic model problems also indicated that for problems with multiple random variables, improving the 

accuracy of polynomial chaos coefficients in NIPC approaches may reduce the computational expense by 

achieving the same accuracy level with a lower order polynomial expansion.  

Besides the Point-Collocation NIPC, the developed uncertainty quantification framework is capable of 

utilizing the Quadrature-based NIPC methods.
1
 In the current study, the Point-Collocation NIPC method 

was implemented for the MOOL RLV application. 

IV. Mixed Aleatory-Epistemic Uncertainty Propagation 
 

 In this study, Second-Order Probability
2-3

 is utilized to propagate mixed (aleatory and epistemic) 

uncertainty through a multidisciplinary analysis framework. Second-Order Probability uses an inner loop 

and an outer sampling loop as described in Figure 1. In the outer loop, a specific value for the epistemic 

variable is prescribed and then passed down to the inner loop. Any traditional aleatory uncertainty method 

may then be used to perform aleatory uncertainty analysis in the inner loop for the specified value of the 

epistemic uncertain variable. The Second-Order Probability will give interval bounds for the output 

variable of interest at different probability levels. Each iteration of the outer loop will produce a 

cumulative distribution function (CDF) based on the aleatory uncertainty analysis in the inner loop. Thus, 

if there are 100 samples in the outer loop, then 100 different CDF curves will be generated. One major 

advantage of Second-Order Probability is that it is easy to separate and identify the aleatory and epistemic 

uncertainties. On the other hand, the two sampling loops can make this method computationally 

expensive especially if traditional sampling techniques, such as Monte Carlo, are used for the uncertainty 

propagation.  

 The current study utilizes an efficient approach for the propagation of mixed uncertainties using the 

framework based on Second-Order Probability. In this approach, the stochastic response is represented 

with a polynomial chaos expansion on both epistemic and aleatoric variables. In this study, Point-

Collocation NIPC is used to construct the stochastic response surface although other NIPC methods (i.e., 

quadrature or sampling based) can be also used. The optimal basis functions are used for the aleatory 

variables whereas Legendre polynomials are used for the epistemic uncertain variables. It should be noted 

that the use of Legendre polynomials should not imply a uniform probability assignment to the epistemic 

variables. This choice is made due to the bounded nature of epistemic uncertain variables. Once the 

stochastic response surface is formed, at fixed values of epistemic uncertain variables, the stochastic 

response values can be evaluated for a large number of samples randomly produced based on the 

probability distributions of the aleatoric input uncertainties (inner loop of Second-Order Probability). This 

procedure will produce a single cumulative distribution function. By repeating the inner loop procedure 

for a large number of epistemic uncertain variables sampled from their corresponding intervals (outer 

loop of Second-Order Probability), a population of cumulative distribution functions can be obtained 

which can be used to calculate the bounds of the stochastic response at different probability levels. Due to 

the analytical nature (polynomial) of the stochastic response, the described procedure will be 

computationally efficient, especially compared to the approaches based on direct MC sampling which 

require a large number of deterministic simulations. The overall procedure of propagating mixed 

(5) 
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uncertainties through a simulation is given in Figure 2. Refer to Bettis and Hosder
10-11 

for more 

information regarding the propagation of mixed uncertainties through complex simulation codes.  

 

 
Figure 1. Schematic of second-order probability. 

 

Figure 2. Flowchart describing the procedure for propagating mixed aleatory-epistemic 

uncertainties with Second-Order Probability and NIPC response surface. 

 

 

 

V. Stochastic Model Problem for Stagnation Point Heat Transfer 

 
A.   Description of Deterministic Fay-Riddell Correlation 

Before application to the RLV system, The mixed uncertainty quantification approach (the NIPC method 

and Second-Order Probability) was implemented to a model problem, which included the prediction of 

stagnation point heat flux on a blunt body. For this model problem, it was assumed that the boundary 

layer was laminar, flow was in equilibrium, and the vehicle's wall was fully catalytic. With these 

assumptions, an analytical correlation for the stagnation heat flux was given by Fay and Riddell.
12 
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 In Equation 6, the Pr symbolizes the Prandtl Number which was assumed to be 0.714 and Le 

symbolizes the Lewis Number which was taken to be 1.4. The subscripts e and w represent the property at 

the edge of the boundary layer and at the wall of the vehicle respectively. Also, RN represents the radius 

of curvature of the blunt body. In Equation 8, Ci represents the species mass fraction behind the normal 

shock wave which was calculated using statistical thermodynamics. The heats of formation at absolute 

zero, ( ) ofh∆ , were taken as zero for the molecules. The properties behind the normal shock were found 

with equilibrium air assumption using thermodynamic curve. The wall temperature was held constant at 

300 K (cold-wall boundary condition). For more details on this model problem, please refer to Bettis and 

Hosder.
10

 

 

B.   Description of the Stochastic Problem 

For this case, the free-stream velocity and the dynamic viscosity at the boundary layer edge (µe) were 

treated as random variables within the Fay-Riddell relation in Equation 6. The free-stream velocity was 

assumed to be an inherent uncertain variable and the coefficient of viscosity (physical model parameter) 

was assumed to be an epistemic uncertain variable. The dynamic viscosity was modeled using 

Sutherland's Law. It is known that the accuracy of Sutherland's Law degrades at high temperatures 

(beyond 3000 K) due to dissociation and ionization effects. One can use high-order models or curve-fits 

to increase the prediction accuracy of viscosity at high temperatures. However, by retaining Sutherland's 

law in this study, an epistemic uncertainty is intentionally introduced to the model problem. In specific, 

the coefficient of viscosity was modeled as an epistemic variable through the introduction of a factor (k) 

which is multiplied with the value obtained with Sutherland's Law (e.g., µe = k (µe)ref). This factor is 

treated as an epistemic uncertain variable with a specified interval which had the upper and lower bounds 

of [1.0, 1.15]. The procedure for calculating these bounds is shown in Bettis and Hosder.
10

  

The free-stream velocity was assumed to have a uniform distribution with a mean of 4167 m/s.
10

 The 

lower and upper bounds were set at 3958.65 m/s and 4375.35 m/s respectively which correspond to a 5% 

uncertainty in the free-stream velocity. For comparison purposes, the free-stream velocity was also 

modeled as a normal random variable with a mean of 4167 m/s and a standard deviation of 100 m/s.  

B.   Mixed Aleatory-Epistemic Uncertainty Quantification 

The approach described previously was followed to propagate the mixed (aleatory and epistemic) 

uncertainty through the Fay-Riddell relation. Convergence studies were carried out and it was found that a 

3
rd

 order polynomial chaos was sufficient for convergence of the NIPC response surface. A Latin 

Hypercube Sample (LHS) of size 5,000 was used for the outer loop (epistemic) sampling. For each value 

of µ, the NIPC response surface was utilized for the inner loop (aleatory) UQ, which produced a single 

cumulative distribution function (CDF). The overall Second-Order Probability analysis produced 5,000 

CDF curves.  

 Figure 3 shows the mixed uncertainty results for uniformly distributed velocity and Figure I 4 displays 

the results for velocity modeled with a normal distribution. In each figure, the left plot shows the results 
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obtained with Second-Order Probability approach with the NIPC response surface formulation and the 

right plot gives the results obtained with a direct Monte Carlo (MC) approach that utilized 10,000 samples 

for the outer loop and 5,000 samples for the inner loop (a total number of 5 x 10
7
 Fay-Riddell 

evaluations). By comparing the results of NIPC and MC, it can clearly be seen that the NIPC results 

compare well with MC. This indicates that the stochastic response surface approach to Second-Order 

Probability is performing well. These results provide confidence for using the same method in other 

expensive computational simulations. Figure 3 and Figure 4 also imply a fairly linear dependency of 

stagnation point heat transfer on the statistical distribution type of the free-stream velocity. In Figure 3, 

the velocity has a uniform distribution and the CDF shapes show that the distribution of stagnation heat 

transfer is fairly uniform as well. Similarly for Figure 4, the velocity has a Gaussian distribution and the 

CDF curves for stagnation point heat transfer are very similar to typical Gaussian CDF curves. These 

results also demonstrate the importance of distribution type for modeling aleatory uncertain variables. 

When the distribution type for the velocity was changed from uniform to normal, the results from Second-

Order Probability were also significantly altered.  
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Figure 3. Horse-tail plot representing mixed aleatory-epistemic uncertainty results for the Fay-

Riddell model problem (uniform distribution for velocity). 
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Figure I. Horse-tail plot representing mixed aleatory-epistemic uncertainty results for the Fay-

Riddell model problem (normal distribution for velocity). 

 

 Stagnation heat flux information at particular probability levels are shown in Table 1 and Table 2, 

which is for the uniform and normal distribution of free-stream velocity, respectively. In these tables, the 

heat flux uncertainty results obtained from Second-Order Probability are reported using intervals at each 

probability level. The second column in the table is for the results obtained with the NIPC response 

surface formulation for uncertainty propagation and the third column shows results obtained with the MC. 

NIPC 

NIPC 

MC 

MC 
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Once again, the NIPC results are consistent with the MC, which demonstrates the effectiveness of the 

NIPC method. The fourth column lists the results from a pure aleatory uncertainty analysis that modeled 

the coefficient of viscosity as a uniform random variable. The same 3
rd

 order NIPC response surface was 

used to propagate the aleatory uncertainty. Although it may not be appropriate to treat the coefficient of 

viscosity as a probabilistic uncertainty due to its nature, the results are shown here for the purpose of 

comparison to mixed uncertainty results. It can be seen that only a single value is available (not an 

interval) at each probability level for the aleatory NIPC results.  
 

Table 1. Stagnation point heat transfer (W/cm
2
) at different probability levels for the model 

problem (Free-stream velocity is taken as a uniform random variable). 

Probability Level 
Second-Order 

Probability (NIPC) 

Second-Order 

Probability (MC) 
Aleatory (NIPC) 

P = 0.0 [106.67, 112.80] [106.18, 112.29] 106.86 

P = 0.2 [113.25, 120.36] [112.97, 119.86] 116.92 

P = 0.4 [120.23, 128.06] [120.15, 127.45] 124.32 

P = 0.6 [127.62, 135.87] [127.48, 135.26] 131.91 

P = 0.8 [135.37, 144.04] [135.16, 143.20] 139.89 

P = 1.0 [143.86, 152.13] [143.14, 151.37] 151.94 

 

Table 2. Stagnation point heat transfer (W/cm
2
) at different probability levels for the model 

problem (Free-stream velocity is taken as a normal random variable). 

Probability Level 
Second-Order 

Probability (NIPC) 

Second-Order 

Probability (MC) 
Aleatory (NIPC) 

P = 0.0 [81.80, 103.29] [83.31, 101.73] 90.14 

P = 0.2 [116.81, 124.10] [116.72, 123.78] 120.35 

P = 0.4 [121.90, 129.45] [121.94, 129.21] 125.67 

P = 0.6 [126.42, 134.24] [126.42, 133.91] 130.43 

P = 0.8 [131.63, 139.88] [131.76, 139.61] 136.07 

P = 1.0 [154.78, 186.28] [156.07, 184.57] 168.41 

 

VI. MOOL Reusable Launch Vehicle System 

 

A.   Integrated Spacecraft System – RLV Demonstration Application  

The MOOL RLV analysis framework application includes Modules (objects) to handle the disciplines of 

Geometry, Aerodynamics, Trajectory, Thermal, Structural Optimization, Mission Performance, and 

Optimization.  These modules were implemented using off-the-shelf software in most cases, with some 

custom code developed as required.  The configuration used in this hypersonic process is a vehicle 

configuration from the Air Force High Alpha RLV Aerodynamic Configuration Development Program.  

The purpose of the development program was to perform tests and validate the CFD codes used for 

predicting airflow around the six different vehicle configurations being researched.  The RLV 

configuration used in this MDAO process is shown in Figure 5. This process is discussed in detail below.  

The implemented RLV process seamlessly handles the passing of data between modules.  Ultimately, this 

allows system level optimization and trade studies to be performed.   
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Figure 5. RLV Vehicle Configuration F. 

The overall process for MDAO of the RLV is shown schematically in Figure 6.  The process is shown 

in Design Structure Matrix format, in which the inputs to a module are shown in the same column as the 

module, and the outputs are shown on the same row (with the exception of the far left column, which 

represents overall process inputs).  For example the FEM Mesh (on the same row as Geometry and the 

same column as Structural) is generated by the Geometry module and used by the Structural module.  The 

modules are listed in execution order along the diagonal, starting with geometry and ending with mission 

performance.  Only the most important interactions are shown. 

 

  

 

Figure 6. RLV design structure matrix. 

 

B.   Modules Included in MOOL RLV System 

The following subsystem modules were incorporated into the RLV system model: 

1. Geometry - The Geometry Module is responsible for morphing analytical meshes for use by the 
MOOL system. 
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2. Aerodynamics - The Aerodynamics Module is responsible for calculating aerodynamics (in the 
form of an aerodynamic database) for a reusable launch vehicle configuration. 

3. Trajectory – The Trajectory Module is responsible for determining the optimum trajectory for 
three types of launch vehicle trajectories.  These include ascent, descent, and boost/flyback.   

4. Thermal – The Thermal Module is responsible for calculating the temperature response of all 
structural components subjected to aero heating and to determine the necessary material 
thicknesses for the thermal protection system (TPS). 

5. Structural - The Structural Module is responsible for analyzing a user-supplied structural model 
and optimizing the structural sizing to minimize the structural weight.   

6. Mission Performance - The Mission Module provides the system-level integration of the results 
from the steady aerodynamics, propulsion/power, and structural optimization modules to 
evaluate the overall performance of the vehicle.   

7. Optimization – The Optimization Module is responsible for building tools for sample point 
generation by using Design of Experiments (DOE), creating metamodels (surrogate models) for 
multi-fidelity correction functions, and performing design optimization. 

 The MOOL RLV system serves to provide system-level performance analysis of a particular RLV 
design configuration. System-level design and optimization can be carried out fairly effortlessly using this 
analysis framework.   

VII. Uncertainty Quantification for the MOOL Reusable Launch Vehicle System 

A.   Description of the Stochastic Problem 

The MOOL RLV system has a large number of input parameters. Many of these parameters are 

propagated through multiple subsystem modules and can have a significant impact on the overall output 

of the system. Uncertainties (inherent and epistemic) can also be associated with some of the input 

parameters which can greatly affect the output of the MOOL RLV system analysis. For the demonstration 

problem of applying the efficient uncertainty quantification techniques to an integrated aerospace system, 

three input uncertainties selected. Two inherent (aleatory) parameters and one epistemic (model form) 

uncertainty were chosen. The altitude of the initial re-entry point was selected as one inherent uncertainty. 

The re-entry altitude, which can be thought of as an initial condition, was selected as an uncertainty 

source because a small deviation from the nominal altitude can greatly affect the overall trajectory of the 

re-entry vehicle which also gets propagated through many of the subsystem modules. The altitude was 

assumed to have a normal distribution with a mean of 295,000 feet and a standard deviation of 1,666.67 

feet. The second inherent uncertainty selected was the re-entry angle of attack (α). The parameter α was 

assumed to have a normal distribution with a mean of 60° and a standard deviation of 1.667°. The third 

uncertain parameter was chosen to be the Young’s Modulus. The RLV system is a futuristic concept 

vehicle, and so there is some level of uncertainty in the technological advances in structural materials 

which will be used to construct these types of vehicles. Therefore, the structural property, Young’s 

Modulus, was treated as an epistemic uncertainty to account for the unknown material that will be used in 

future manufacturing of the RLV. The lower and upper bounds for the Young’s Modulus was selected as 

25,000,000 psi and 29,600,000 psi, respectively. An overview of the input uncertainties is shown in Table 

3.  

The mixed uncertainties were propagated through the MOOL RLV system to a total of four output 

variables which are of interest in the design of a RLV system. The four output variables analyzed were 

the maximum range, maximum cross range, maximum dynamic pressure (q), and the takeoff gross weight 

(TOGW).    
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Table 3. Uncertainty ranges for the parameters used in the RLV problem. 

Uncertain Parameter Uncertainty Type Uncertainty Range 

Altitude Aleatory (normal) µ = 295,000 ft, σ = 1,666.67 ft 

α Aleatory (normal) µ = 60°, σ = 1.6667° 

Young's Modulus Epistemic [25,000,000 psi, 29,600,000 psi] 

 

B.   Mixed Uncertainty Quantification for the RLV Application 

The approach described previously was followed to propagate the mixed (aleatory and epistemic) 

uncertainty through the RLV application problem. For this particular case, Point-Collocation NIPC with 

an oversampling ratio of two was utilized to formulate the response surface which was implemented into 

the sampling loops of Second-Order Probability. Convergence studies were carried out and it was found 

that a 4
th
 order polynomial chaos was sufficient for convergence of the NIPC response surface. This 

required a total of 70 MOOL RLV system evaluations (Equation 2). A Latin Hypercube Sample (LHS) of 

size 1,000 was used for the outer loop (epistemic) sampling. For each iteration of the outer loop in 

Second-Order Probability, the NIPC response surface was utilized for the inner loop (aleatory) UQ, with 

1,000 samples, which produced a single cumulative distribution function (CDF). The overall Second-

Order Probability analysis produced 1,000 CDF curves, which were then evaluated to find the upper and 

the lower bounds of the output variables of interest at various probability levels. 

The interval bounds at various probability levels for each of the four output variables of interest 

(maximum range, maximum cross range, maximum dynamic pressure, and TOGW) are shown in Table 4. 

The interval range for maximum range, maximum cross range, and maximum dynamic pressure (q) are 

much smaller compared to the interval range of TOGW. This result implies that the epistemic uncertainty 

(Young’s Modulus) has the largest impact on TOGW. However, the maximum range, maximum cross 

range, and maximum dynamic pressure have a significant amount of uncertainty due to the aleatory 

(inherent) input uncertainties. There is a relatively large interval range for TOGW at all probability levels. 

This result directly implies that the Young’s Modulus (epistemic uncertainty) has a significant 

contribution to the uncertainty in the vehicle’s TOGW. Uncertainty in TOGW is important from a design 

point of view because a vehicle’s takeoff weight directly affects the vehicle’s capacity for carrying 

payload, fuel, etc.   

 

Table 4. Interval bounds for the output variables of interest at various probability levels. 

Probability  

Level 

Maximum Range 

(miles) 

Maximum Cross 

Range (miles) 

Maximum q 

(psf) 

Maximum TOGW 

(lbs) 

P = 0.05 [985.33, 987.65] [1158.36, 1160.52] [126.19, 146.59] [26304.16, 28421.77] 

P = 0.2 [988.17, 988.82] [1163.20, 1164.10] [174.83, 177.30] [27727.63, 29523.33] 

P = 0.4 [989.15, 990.17] [1163.91, 1164.33] [194.67, 195.97] [28045.59, 29915.57] 

P = 0.6 [989.91, 991.26] [1164.34, 1164.64] [206.68, 207.97] [28270.58, 30287.93] 

P = 0.8 [990.92, 992.00] [1164.57, 1165.47] [215.50, 217.97] [28639.11, 30600.30] 

P = 0.95 [994.74, 995.35] [1164.80, 1166.65] [224.13, 234.68] [30271.89, 33030.52] 

 

The results of the mixed (aleatory-epistemic) uncertainty quantification can be used in the assessment 

of the robustness or the reliability of a given vehicle. For example, in a robust design study where aleatory 

and epistemic uncertainties are present, one possible approach would be to minimize the variation 

(interval) at the mean probability level (p=50%). By shrinking this interval, the design sensitivity due to 
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the epistemic uncertainties would be reduced. One method for reducing the interval is by gaining a better 

fundamental understanding of the physics associated with the epistemic uncertainty, and developing more 

accurate physical models. Alternatively, the designs that are robust to the uncertainty in physical models 

can be developed. In a reliability-based assessment, a large interval (high epistemic uncertainty) at a 

specified probability level may indicate a larger design failure region for a given vehicle configuration 

and flight condition, which has to be addressed again with a stochastic design framework. 

The demonstration problem shown here has successfully displayed the efficiency of the developed 

uncertainty quantification methods. In the current problem, all relevant results were obtained with 70 

evaluations of the MOOL RLV system. If traditional and existing second-order probability methods were 

used to achieve these same results, it would require a total of 10
6
 MOOL RLV system evaluations. A 

conservative estimate of the runtime of one MOOL RLV evaluation is approximately five hours on a 

single laptop PC with an Intel Core 2 Duo (2.54GHz) processor. Using this estimate, the current method 

of second-order probability with the NIPC response surface implementation took approximately 15 days 

to complete. If the traditional/existing methods were used then it would take approximately 570 years to 

complete all the simulations on the same computer. This relative comparison shows that the time 

requirement for propagating mixed uncertainties using the traditional methods is obviously not feasible 

for complex systems. However, the second-order probability with the NIPC response surface formulation 

makes it feasible to propagate mixed uncertainties in a relatively reasonable amount of time.  

VIII. Conclusions 

The objective of this study was to apply an efficient uncertainty quantification framework developed, 

which is capable of propagating mixed (aleatory and epistemic) uncertainties through complex simulation 

codes, to an integrated spacecraft system. In particular, the integrated spacecraft system was the MOOL 

Reusable Launch Vehicle (RLV) system. This particular system has multiple modules (objects) which 

work together to perform system level analysis for the RLV system. The developed uncertainty 

quantification framework was utilized to quantify the uncertainty in the RLV takeoff gross weight, cross-

range, range, and maximum dynamic pressure due to epistemic and aleatory uncertainties that may exist 

in various parameters used in the simulation of the RLV system. For this particular study, the reentry 

altitude, reentry angle of attack, and the Young’s Modulus were treated as uncertainties. The reentry 

altitude and angle of attack were treated as aleatory uncertainties described with a normal probability 

distribution. The Young’s Modulus was modeled as an epistemic uncertain parameter and represented by 

using an interval. For the quantification of mixed (aleatory-epistemic) uncertainty, Second-Order 

Probability Theory that utilized a stochastic response surface obtained with Point-Collocation Non-

Intrusive Polynomial Chaos (NIPC) Method was used.   

For the stochastic MOOL RLV application problem, the mixed uncertainty quantification approach 

was utilized with a 4
th
 degree stochastic response surface obtained using the Point-Collocation NIPC 

method with an oversampling ratio of two. This required a total of 70 MOOL RLV system executions. 

The uncertainty in the various output parameters was obtained in terms of intervals at different probability 

levels. These preliminary results indicate a relatively large amount of uncertainty in the output 

parameters. Future work will include comparing the Point-Collocation NIPC results with quadrature-

based NIPC analysis. Furthermore, sensitivity analysis will be performed using Sobol Indices in order to 

achieve a relative ranking of the importance of each input uncertainty to the overall uncertainty in the 

output variables of interest. 

Overall, the results obtained in this study show the potential of the uncertainty quantification approach 

that utilizes Second-Order Probability and the Non-Intrusive Polynomial Chaos for efficient and effective 

propagation of mixed (aleatory and epistemic) uncertainties in integrated aerospace systems.  
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