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The objective of the study described in this papewas to develop an efficient
uncertainty quantification framework capable of andyzing uncertainty in

integrated spacecraft system models. Specificallythis paper discusses the
capabilities of the developed framework and the regts when applied to the
multidisciplinary analysis of a reusable launch veltle (RLV). This particular

framework is capable of efficiently propagating mied (inherent and epistemic)
uncertainties through complex simulation codes. Té Second-Order Probability
Theory utilizing a stochastic response surface obiteed with Point-Collocation Non-
Intrusive Polynomial Chaos was used for the propageon of the mixed
uncertainties. This particular methodology was apgkd to the RLV analysis, and the
uncertainty in the output parameters of interestedwas obtained in terms of
intervals at various probability levels. This study has also demonstrated the
feasibility of the developed uncertainty quantificaion framework for efficient

propagation of mixed uncertainties in the analysi®f complex aerospace systems.

[. Introduction

Uncertainties are generally ubiquitous in the analynd design of highly complex engineering
systems. Uncertainties can arise from the lack mfwkedge in physical modeling (epistemic
uncertainty), inherent variations in the systemiafary uncertainty), and numerical errors in the
computational procedures used for analysis. Itripartant to account for all of these uncertainties
applications such as robust and reliable designudfi-disciplinary aerospace systems. A reusahlada
vehicle (RLV) is a highly complex aerospace systetmich represents a cost viable option for access t
space missions due to its reusability aspect. Samc®LV system is composed of various subsystems
which must work together to serve an over-archingppse or mission objective/constraint, a
multidisciplinary approach for the analysis andigie®f RLV systems is required.

Uncertainties are generally present in the modségl in each discipline of an RLV multidisciplinary
analysis framework. It is important to account &f of these uncertainties for accurate and reiabl
estimates of the RLV system performance. The pgnpairpose of this paper will be to demonstrate an
efficient approach for uncertainty quantification in the multidisdiphry analysis of a RLV, which has a
mixture of aleatory (inherent) and epistemic inputcertainties. Uncertainty quantification will be
performed on various output variables of interestain RLV system such as the weight and vehiclssero
range. For the propagation of mixed (aleatory-epit) uncertainty, Second-Order Probability Theory
utilizing Point-Collocation Non-Intrusive Polynonhi@haos (NIPC)will be used’? In general, the NIPC
methods, which are based on the spectral reprégentd uncertainty, are computationally more aéd
than traditional Monte Carlo methods for moderatenber of uncertain variables and can give highly
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accurate estimates of various uncertainty methcaddition, they treat the deterministic modeb(en
RLV system) as a black box and the uncertainty rmédion in the output is approximated with a
polynomial expansion, which is constructed usingnamber of deterministic solutions, each
corresponding to a sample point in random spacereftre, the NIPC methods become a perfect
candidate for the uncertainty quantification in themerical solutions, which are computationally
expensive and complex.

Previously, M4 Engineering developed the Multididiciary Optimization Object Library (MOOL) as
part of a phase Il SBIR effort funded by NASA Glemesearch Center. An object-oriented
Multidisciplinary Analysis Optimization (MDAQ) fragwork is an automated analysis, optimization, and
virtual test system that allows (1) consideratidrinteractions between disciplines during analyé3,
automated execution of multiple analysis codes iierdnt computers, (3) incorporation of test daia
improve accuracy of analysis models, and (4) op@ton of vehicle parameters to achieve superior
performance. In the MOOL project, M4 developed itesof common MDAO objects that can be used in
multiple framework environments to handle commakseencountered in integration of multidisciplinary
analysis and optimization problems. Specificallg,an example application, a high-alpha RLV system
was integrated and analyzed. In the current sttldy,same MOOL high-alpha RLV system will be
implemented for uncertainty quantification (UQ) bsés.

Currently, M4 Engineering and Missouri S&T have tpared to develop an UQ framework. This
framework is built upon an Uncertainty Module pasly developed by M4 Engineering. One of the
key objectives of this project is to implement tRen-Intrusive Polynomial Chaos (NIPC) expansion
methods within the framework. This framework was/eloped in Python languddeand primarily
serves as an outer analysis layer. The utilityhisf framework is through the efficient applicatiwihNIPC
methods to any user-specified system, which caexbeuted from a command line.

In the following section, a brief description dfet various types of uncertainties found in complex
numerical simulations is given. In Section lll, geb overview on the theory behind Point-Collocatio
Non-Intrusive Polynomial Chaos will be given. NemtSection IV, an efficient approach to propagate
mixed aleatory and epistemic uncertainties throagéimulation code using NIPC and Second-Order
Probability will be outlined. In Section V, the dés of the uncertainty quantification frameworklIviie
given. In Section VI, the MOOL RLV system will beestribed in detail along with preliminary
uncertainty quantification results. Finally in SentVIl, the conclusions and the main objectivesoof
future work are given.

Il. Types of Uncertainties in Computational Simulations

As described in Oberkampf et. 4lthere can be three different types of uncertaimtygl error in a
computational simulation: (1) aleatory uncertairf), epistemic uncertainty, and (3) numerical eriidre
term aleatory uncertainty describes the inhereriatran of a physical system. Such variation is tlue
the random nature of input data and can be matheatigtrepresented by a probability density funitib
substantial experimental data are available famasing the distribution (uniform, normal, etc.)hd
variation of the free-stream velocity or manufaictgrtolerances can be given as examples for aleator
uncertainty in a stochastic external aerodynamioblpm. The aleatory uncertainty is sometimes reter
as irreducible uncertainty due to its nature.

Epistemic uncertainty in a non-deterministic sgstariginates due to ignorance, lack of knowledge, o
incomplete information (such as the values of fpansquantities in high temperature hypersonic flow
simulations). The key feature of this definitiorthgt the fundamental cause is incomplete inforomatif
some characteristics of the system. As a resulinemease in knowledge or information can lead to a
decrease in the epistemic uncertainty. Therefopisteamic uncertainty is referred to as reducible
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uncertainty. As shown by Oberkampf and Heftanpdeling of epistemic uncertainties with probatidi
approaches may lead to inaccurate predictionsdrathount of uncertainty in the responses due to the
lack of information on the characterization of umamty as probabilistic. One approach to charamter
the epistemic uncertain variables is to use intervithe upper and lower bounds on the uncertaiialvier

can be prescribed using either limited experimentaizh or expert judgment.

Numerical error is defined as a recognizable @ity in any phase or activity of modeling and
simulation that is not due to the lack of knowled@errors cannot be well-characterized, then timeast
be treated as part of the epistemic uncertainfiBs. discretization error in spatial or temporal dam
originating from the numerical solution of partdifferential equations that describes a physicadlehin
a discretized computational space (mesh) can lemgig an example of numerical uncertainty.

I1l.  The Point-Collocation NIPC

The polynomial chaos is a stochastic method, wiscbased on the spectral representation of the
uncertainty. An important aspect of spectral repnéstion of uncertainty is that one may decompose a
random function (or variable) into separable deigistic and stochastic components. For example, for
any random variable (i.e.@") such as velocity, density or pressure in a swtahdluid dynamics
problem, we can write,

aﬂ(xé):iai(w@, @

where g;(X) is the deterministic component aHéﬁ(g?) is the random basis function corresponding to the
i"™ mode. Here we assum&" to be a function of deterministic independent alieé vectorX and the n-

dimensional random variable vecté’r: (é,,.--£,,), which has a specific probability distribution. €rh
discrete sum is taken over the number of outputasod

p+1= N+ P! 2)
nip

which is a function of the order of polynomial ckgp) and the number of random dimensions The
basis function ideally takes the form of multi-dims@nal Hermite Polynomial to span the n-dimendiona
random space when the input uncertainty is Gaugsiabounded), which was first used by Wiérer
his original work of polynomial chaos. Legendrec@lai) and Laguerre polynomials are optimal basis
functions for bounded (uniform) and semi-boundedpémential) input uncertainty distributions
respectively in terms of the convergence of theissies. Different basis functions can be used with
different input uncertainty distributions (See Xind Karniadakisfor a detailed description), however
the convergence may be affected depending on this lfianction used. The detailed information on
polynomial chaos expansions can be found in WadtedsHuys® and Hosder et. al.

To model the uncertainty propagation in computatiosimulations via polynomial chaos with the
intrusive approach, all dependent variables andiaan parameters in the governing equations are
replaced with their polynomial chaos expansiongirigathe inner product of the equations, (or projer
each equation ontd basis) yieldP + 1 times the number of deterministic equations witiah be solved
by the same numerical methods applied to the aigleterministic system. Although straightforwand i
theory, an intrusive formulation for complex prabk can be relatively difficult, expensive, and time
consuming to implement. To overcome such inconverie associated with the intrusive approach, non-
intrusive polynomial chaos formulations have beemstdered for uncertainty propagation.
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The collocation based NIPC method starts with @ptathe uncertain variables of interest with their
polynomial expansions given by Equation 1. THenl vectors ¢, :{fl,fz,...,fn}k, k=0,12,..P) are

chosen in random space for a given PC expansion Rvit1 modes and the deterministic code is
evaluated at these points. With the left hand eidéquation 1 known from the solutions of detersiici
evaluations at the chosen random points, a linesdes of equations can be obtained:

Wl W) o We(&)|[d] |a ()
l'I',o(fl) l'Pl(Czl) LIJP(gl) CTl — a (51) 3)

LIJO("?P) LIJl(;éP) LIJP(EP) ap a*(’:tp)

The spectral modesa() of the random variabley” are obtained by solving the linear system of
equations given above. Using these, mqacp)(and the varianceds,) of the solution can be obtained by

H; =0,

P - (4)
7, = 2ai (WD)

The solution of the linear problem given by EquatBrequired +1 deterministic function evaluations.
If more thanP +1 samples are chosen, then the over-determinednsystequations can be solved using
the Least Squares method. Hosder €t ialvestigated this option by increasing the nundferollocation
points in a systematic way through the introducttba parametenm, defined as

N = number of samples (5)
P P+1 '

In the solution of stochastic model problems withitiple uncertain variables, they have usgét 1, 2, 3,
and4 to study the effect of the number of collocatiarings (samples) on the accuracy of the polynomial
chaos expansions. Their results showed that usmgrder of collocation points that is twice morarth
the minimum number requireah&2) gives a better approximation to the statisticeath polynomial
degree. This improvement can be related to theeése of the accuracy of the polynomial coefficients
due to the use of more information (collocationnpg) in their calculation. The results of the ststit
model problems also indicated that for problem$wiultiple random variables, improving the accuracy
of polynomial chaos coefficients in NIPC approacheay reduce the computational expense by
achieving the same accuracy level with a lower iopdéynomial expansion.

IV. Mixed Aleatory-Epistemic Uncertainty Propagation

In this study, Second-Order Probablfityis utilized to propagate mixed (aleatory and epist)
uncertainty through multidisciplinary analysis frework. Second-Order Probability uses an inner loop
and an outer sampling loop as described in Figuta the outer loop, a specific value for the egmsic
variable is prescribed and then passed down tmttes loop. Any traditional aleatory uncertainty tined
may then be used to perform aleatory uncertain@yais in the inner loop for the specified valuetiué
epistemic uncertain variable. The Second-Order &hitity will give interval bounds for the output
variable of interest at different probability leselEach iteration of the outer loop will produce a
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cumulative distribution function (CDF) based on #heatory uncertainty analysis in the inner loopug,

if there are 100 samples in the outer loop, theh different CDF curves will be generated. One major
advantage of Second-Order Probability is that &dsy to separate and identify the aleatory arstespic
uncertainties. On the other hand, the two samplowps can make this method computationally
expensive especially if traditional sampling tecfuas, such as Monte Carlo, are used for the uigrta
propagation.

The current study utilizes an efficient approachtfee propagation of mixed uncertainties using the
framework based on Second-Order Probability. Witk &pproach, the stochastic response is represente
with a polynomial chaos expansion on both episteand aleatoric variables. In this study, Point-
Collocation NIPC is used to construct the stochastsponse surface although other NIPC methods (i.e
guadrature or sampling based) can be also usedofitmaal basis functions are used for the aleatoric
variables whereas Legendre polynomials are useithéoepistemic uncertain variables. It should bedo
that the use of Legendre polynomials should notyrapuniform probability assignment to the epistemi
variables. This choice is made due to the boundddre of epistemic uncertain variables. Once the
stochastic response surface is formed, at fixedegabf epistemic uncertain variables, the stoabhasti
response values can be evaluated for a large nuofosamples randomly produced based on the
probability distributions of the aleatoric inputaantainties (inner loop of Second-Order Probalilithis
procedure will produce a single cumulative disttitnu function. By repeating the inner loop procedur
for a large number of epistemic uncertain variatdeaspled from their corresponding intervals (outer
loop of Second-Order Probability), a populationcoimulative distribution functions can be obtained
which can be used to calculate the bounds of thehastic response at different probability levBlse to
the analytical nature (polynomial) of the stochastesponse, the described procedure will be
computationally efficient, especially compared e approaches based on direct MC sampling which
require a large number of deterministic simulations

| “Black Box”
Simulation

Figure 1. Schematic of second-order probability.

V. Uncertainty Quantification Framework

A. Overview

The UQ Framework was developed as a Python clabgwthe M4.Uncertainty module. This allows the
framework to have access to the various UQ teclesigalgorithms, and visualization schemes existing
within the M4.Uncertainty module. The frameworksagesigned to serve as a generalized outer analysis
layer for a given user-specified system (see Figire
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This approach allows the framework to analyze amdract with the inputs and outputs of any user-
specified system that can be executed from a comria@. The UQ Framework consists of three main
methods:
1. preProcess():
o0 Generates sample values for input random variadswrites them to the Framework
OutputFolder.
2. systemExecute():
0 Executes the user-specified system by callinginfthe command line.
3. postProcess():
o Performs the UQ analysis on the system output data.

M4.Uncertainty Module
* NIPC Method

* Monte Carlo Method
* Visualization Techniques

User-Specified System

Geometric:
Variables

Flight Profile Load Cases
I FEM

Figure 2. Overview of UQ Framework

B. Framework Operation
The UQ Framework operation process can be sumnddbiz¢he following:
* Begin preProcess()
o Generate and write required number of sample vdbresput random variables to a file
to be used by systemExecute()
o Organize and write UQ method (i.e. NIPC) input data file to be used by postProcess()
* Generate output values for each sample
o For each sample value, wrap the user-specifie@systputs
0 Begin systemExecute()
o Collect, organize, and write comma-separated, colformatted output values from
user-specified system outputs to a file
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* Begin postProcess()
o0 Invoke UQ post process method,
= For NIPC method, solve matrix equation for alphefficients for each output to

determine the mean
= Compute Gauss-quadrature to determine variancestartlard deviation for

output variables of interest
=  Write cumulative distribution function (CDF) andopability density function
(PDF) plot data to a file in UQ Framework outputfer

* Generate CDF and PDF plots
0 Using previously generated plot data, create and BAG files for each output variable

of interest

Figure 3 shows a schematic of this process.

Generate sample
values

Fori=1:num_samples

Get system Calculate alpha
outputs coefficients
© NIPC
. Method
Run system Compute Gauss- |
with sample quadrature
list value i

Wrap system
inputs

4-NO YES

Figure 3. Framework.py Process Overview (shown foNIPC method)

C. Framework Capabilities — NIPC Techniques
The postProcess() section of the UQ Framework aepplie NIPC methodologies to the output data
generated from the user-specified (black box) systeThis procedure can be summarized by the

following bulleted list:

postProcess()
* Pure Aleatory Analysis
o NIPC Methods
= Regression
* Latin Hypercube Sampling
= Quadrature
e Quadrature Points
o Calculate Expansion Coefficients
o Calculate Mean, Standard Deviation, PDF, CDF, etc.
* Mixed Aleatory-Epistemic Analysis (Second-Order [Bability)
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NIPC Response Surface Formulation
= Regression
» Latin Hypercube Sampling
= Quadrature
e Quadrature Points
Calculate Expansion Coefficients
Formulate Stochastic Response Surface
Apply Response Surface to Second-Order Probability

For clarity, Figure 4 was included to illustratésthprocess.

No
= Pure Aleatory Inputs?

.

Figure 4. Flowchart for NIPC Methodologies with UQFramework

VI. UQ of MOOL Reusable Launch Vehicle System

. Integrated Spacecraft System — RLV Demonstration Aplication

The MOOL RLV analysis framework application inclsdglodules (objects) to handle the disciplines of
Geometry, Aerodynamics, Trajectory, Thermal, Stradt Optimization, Mission Performance, and
Optimization. These modules were implemented usiifighe-shelf software in most cases, with some
custom code developed as required. The configuratised in this hypersonic process is a vehicle
configuration from the Air Force High Alpha RLV Amdtynamic Configuration Development Program.
The purpose of the development program was to paertests and validate the CFD codes used for

predicting airflow around the six different vehicleonfigurations being researched.
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configuration used in this MDAO process is showifriigure 5. This process is discussed in detailvieelo
The implemented RLV process seamlessly handlegabging of data between modules. Ultimately, this
allows system level optimization and trade stuthese performed.

Figure 5. RLV Vehicle Configuration F.

The overall process for MDAO of the RLV is showmematically in Figure 6. The process is shown
in Design Structure Matrix format, in which the irtp to a module are shown in the same column as the
module, and the outputs are shown on the same witlv the exception of the far left column, which
represents overall process inputs). For exam@d-tEM Mesh (on the same row as Geometry and the
same column as Structural) is generated by the @egmodule and used by the Structural module. The
modules are listed in execution order along thgahal, starting with geometry and ending with nassi
performance. Only the most important interactiaresshown.

Geometric
Variables | "] Geometry [ Aero Mesh FEM Mesh
Aerodynamics | | A Aero
Y Database Database

Trajéctory . . Fuel/Range/

CrTEEE Trajectory || Flight Profle [—{ Load Cases Speed
| ! Y \

Material FEM

Selection —»| Thermal | 1o mseratures

Material Empty Mass f | | Materials, ;
Selection Properties | | G g Weights | Emety Weight

Mission | | Cross-range/
Performance G's

System Level Optimization and w
Trade Studies

Figure 6. RLV design structure matrix.

B. Modules Included in MOOL RLV System
The following subsystem modules were incorporatéo the RLV system model:
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1. Geometry - The Geometry Module is responsible for morpranglytical meshes for use by the
MOOL system.

2. Aerodynamics- The Aerodynamics Module is responsible for clating aerodynamics (in the
form of an aerodynamic database) for a reusabletauehicle configuration.

3. Trajectory — The Trajectory Module is responsible for deteimg the optimum trajectory for
three types of launch vehicle trajectories. Theskide ascent, descent, and boost/flyback.

4. Thermal — The Thermal Module is responsible for calculptine temperature response of all
structural components subjected to aero heating tandetermine the necessary material
thicknesses for the thermal protection system (TPS)

5. Structural - The Structural Module is responsible for analgza user-supplied structural model
and optimizing the structural sizing to minimize ttructural weight.

6. Mission Performance- The Mission Module provides the system-levetgnaition of the results
from the steady aerodynamics, propulsion/power, atrdctural optimization modules to
evaluate the overall performance of the vehicle.

7. Optimization — The Optimization Module is responsible for birtyl tools for sample point
generation by using Design of Experiments (DOEating metamodels (surrogate models) for
multi-fidelity correction functions, and performimtgsign optimization.

The MOOL RLV system serves to provide system-lgseiformance analysis of a particular RLV
design configuration. System-level design and agtition can be carried out fairly effortlessly usthis
analysis framework.

C. Description of the Stochastic Problem

The MOOL RLV system has a large number of inputapaters. Many of these parameters are
propagated through multiple subsystem modules andhave a significant impact on the overall output
of the system. Uncertainties (inherent and episteroan also be associated with some of the input
parameters which can greatly affect the outpuhefOOL RLV system analysis. For the demonstration
problem of applying the efficient uncertainty qufication techniques to an integrated space system,
there were a total of three input uncertaintie®aedd. Two inherent (aleatory) parameters and one
epistemic (model form) uncertainty were chosen. altieude of the initial re-entry point was selattes
one inherent uncertainty. The re-entry altitudejciwhcan be thought of as an initial condition, was
selected as an uncertainty source because a sevaltidn from the nominal altitude can greatly affe
the overall trajectory of the re-entry vehicle whialso gets propagated through many of the submyste
modules. The altitude was assumed to have a nadistmlbution with a mean of 295,000 feet and a
standard deviation of 1,666.67 feet. The secondratit uncertainty selected was the re-entry angle o
attack (). The parametexr was assumed to have a normal distribution witheamof 60° and a standard
deviation of 1.667°. The third uncertain parametes chosen to be the Young’'s Modulus. The RLV
system is a futuristic concept vehicle, and soghsersome level of uncertainty in the technological
advances in structural materials which will be useaonstruct these types of vehicles. Therefdre, t
structural property, Young's Modulus, was treate@a epistemic uncertainty to account for the unkno
material that will be used in future manufacturioigthe RLV. The lower and upper bounds for the
Young’'s Modulus was selected as 25,000,000 psi2&)800,000 psi, respectively. An overview of the
input uncertainties is shown in Table 1.

The mixed uncertainties were propagated throughMit®L RLV system to a total of four output
variables which are of interest in the design &la/ system. The four output variables analyzed were
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the maximum range, maximum cross range, maximuramjapressure (q), and the takeoff gross weight
(TOGW).

Table 1. Uncertainty ranges for the parameters useth the RLV problem.

Uncertain Parameter Uncertainty Type Uncertainty Range
Altitude Aleatory (normal)  u = 295,000 ftoc = 1,666.67 ft

o Aleatory (normal) n=60°c=1.6667°
Young's Modulus Epistemic [25,000,000 psi, 29,600,0si]

D. Mixed Uncertainty Quantification for the RLV A pplication

The approach described previously was followed topagate the mixed (aleatory and epistemic)
uncertainty through the RLV application problemr fas particular case, Point-Collocation NIPC with
an oversampling ratio of two was utilized to foramel the response surface which was implemented into
the sampling loops of Second-Order Probability. ¥&wgence studies were carried out and it was found
that a 4th order polynomial chaos was sufficient donvergence of the NIPC response surface. This
required a total of 70 MOOL RLV system evaluati¢gguation 2). A Latin Hypercube Sample (LHS) of
size 1,000 was used for the outer loop (episteséahpling. For each iteration of the outer loop in
Second-Order Probability, the NIPC response sunfigae utilized for the inner loop (aleatory) UQ, hwit
1,000 samples, which produced a single cumulatistiloution function (CDF). The overall Second-
Order Probability analysis produced 1,000 CDF csyvehich were then evaluated to find the upper and
the lower bounds of the output variables of intea¢various probability levels.

The interval bounds at various probability levets €ach of the four output variables of interest
(maximum range, maximum cross range, maximum dyo@nassure, and TOGW) are shown in Table 2.
The interval range for maximum range, maximum cmasgje, and maximum dynamic pressure (q) are
much smaller compared to the interval range of TOGWS result implies that the epistemic uncertaint
(Young's Modulus) has the largest impact on TOGVéwdver, the maximum range, maximum cross
range, and maximum dynamic pressure have a signtfiamount of uncertainty due to the aleatory
(inherent) input uncertainties. There is a reldyivarge interval range for TOGW at all probabiligvels.
This result directly implies that the Young's Modsl (epistemic uncertainty) has a significant
contribution to the uncertainty in the vehicle’s G@. Uncertainty in TOGW is important from a design
point of view because a vehicle’s takeoff weightedily affects the vehicle’s capacity for carrying
payload, fuel, etc.

Table 2. Interval bounds for the output variables 6 interest at various probability levels.

Probability Maximum Range Maximum Cross Maximum q Maximum TOGW

Level (miles) Range (miles) (psf) (Ibs)
P =0.05 [985.33, 987.65] [1158.36, 1160.52]  [196146.59] [26304.16, 28421.77]
P=0.2 [988.17, 988.82] [1163.20, 1164.10]  [174B87.30] [27727.63, 29523.33]
P=04 [989.15, 990.17] [1163.91, 1164.33]  [194B95.97] [28045.59, 29915.57]
P=0.6 [989.91, 991.26] [1164.34,1164.64]  [206B8%.97] [28270.58, 30287.93]
P=0.8 [990.92, 992.00] [1164.57,1165.47]  [215&07.97] [28639.11, 30600.30]

P =0.95 [994.74,995.35]  [1164.80, 1166.65]  [234234.68] [30271.89, 33030.52]

The results of the mixed (aleatory-epistemic) utaiety quantification can be used in the assessment
of the robustness or the reliability of a givenieéh For example, in a robust design study whézatary
and epistemic uncertainties are present, one pesajproach would be to minimize the variation
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(interval) at the mean probability level (p=50%) ghrinking this interval, the design sensitivityedto
the epistemic uncertainties would be reduced. Oethaod for reducing the interval is by gaining atdret
fundamental understanding of the physics associsitdxdthe epistemic uncertainty, and developingenor
accurate physical models. Alternatively, the desitirat are robust to the uncertainty in physicatiel®
can be developed. In a reliability-based assessnaetarge interval (high epistemic uncertainty)aat
specified probability level may indicate a largesmn failure region for a given vehicle configimat
and flight condition, which has to be addressedragiéh a stochastic design framework.

The demonstration problem shown here has succhssigplayed the efficiency of the developed
uncertainty quantification methods. In the currprablem, all relevant results were obtained with 70
evaluations of the MOOL RLV system. If traditioraald existing second-order probability methods were
used to achieve these same results, it would reguiotal of 10 MOOL RLV system evaluations. A
conservative estimate of the runtime of one MOOLVRivaluation is approximately five hours. Using
this estimate, the current method of second-orderbgbility with the NIPC response surface
implementation took approximately 15 days to conapldf the traditional/existing methods were used
then it would take approximately 570 years to catglall the simulations. The time requirement for
propagating mixed uncertainties using the traditiamethods is obviously not feasible. However, the
second-order probability with the NIPC responsdasmgr formulation makes it feasible to propagate
mixed uncertainties in a relatively reasonable amofitime.

VII. Conclusions and Future Work

The development of an efficient uncertainty quécdiion framework with application to a complex
reusable launch vehicle system has been preserited. UQ capabilities and layout of the developed
framework have been discussed. Specifically, thieqaleatory NIPC and mixed (aleatory-epistemic)
second-order probability methods have been detaifeblsubsequently applied to an RLV system. The
probability levels were given for four output vdiies of interest from the RLV system in which three
input uncertainties were propagated. The epistemiertainty was shown to have the largest impact o
the TOGW. Additionally, the NIPC methods utilizedthin the developed UQ Framework have proven
to be efficient relative to existing/traditionatteiques as seen in the RLV demonstration problem.

The UQ Framework being developed is much a worrogress. A key technical objective for the
future effort is the refinement of NIPC methodsfaather improve their computational efficiency and
accuracy for mixed uncertainty propagation in speafé system models. Additionally, a non-linear
global sensitivity analysis capability will be igated to the uncertainty quantification framewtarkank
the importance of each uncertainty source anddaae the number of dimensions in uncertainty space.
The development of an adaptive uncertainty quaatibn methodology for problems with a large
number of uncertain variables which will succedsivdilize different NIPC methods depending on the
size of the problem along with the global sendiiinformation. Next, a general Quantification of
Margins and Uncertainties methodology will be imtggd to the uncertainty quantification framework
which will include (1) the consideration of botheatory and epistemic forms in the calculation
uncertainty and margins, (2) the utilization ofpesse surfaces based on NIPC for the propagation of
uncertainty through each sub-system and overatesysand (3) robust measures to describe the sub-
system and overall system safety/reliability/robass which can be used in decision-making and omssi
planning. These capabilities will be available disage in an advanced GUI also to be developestlyl.a
integration of the UQ framework with advanced MDA®ftware will allow for UQ analysis of an
enormous amount of already-developed systems.
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