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The objective of the study described in this paper was to develop an efficient 
uncertainty quantification framework capable of analyzing uncertainty in 
integrated spacecraft system models. Specifically, this paper discusses the 
capabilities of the developed framework and the results when applied to the 
multidisciplinary analysis of a reusable launch vehicle (RLV). This particular 
framework is capable of efficiently propagating mixed (inherent and epistemic) 
uncertainties through complex simulation codes.  The Second-Order Probability 
Theory utilizing a stochastic response surface obtained with Point-Collocation Non-
Intrusive Polynomial Chaos was used for the propagation of the mixed 
uncertainties. This particular methodology was applied to the RLV analysis, and the 
uncertainty in the output parameters of interested was obtained in terms of 
intervals at various probability levels. This study has also demonstrated the 
feasibility of the developed uncertainty quantification framework for efficient 
propagation of mixed uncertainties in the analysis of complex aerospace systems. 

I.  Introduction 
ncertainties are generally ubiquitous in the analysis and design of highly complex engineering 
systems. Uncertainties can arise from the lack of knowledge in physical modeling (epistemic 

uncertainty), inherent variations in the systems (aleatory uncertainty), and numerical errors in the 
computational procedures used for analysis. It is important to account for all of these uncertainties in 
applications such as robust and reliable design of multi-disciplinary aerospace systems. A reusable launch 
vehicle (RLV) is a highly complex aerospace system, which represents a cost viable option for access to 
space missions due to its reusability aspect. Since an RLV system is composed of various subsystems 
which must work together to serve an over-arching purpose or mission objective/constraint, a 
multidisciplinary approach for the analysis and design of RLV systems is required.  
 
 Uncertainties are generally present in the models used in each discipline of an RLV multidisciplinary 
analysis framework. It is important to account for all of these uncertainties for accurate and reliable 
estimates of the RLV system performance. The primary purpose of this paper will be to demonstrate an 
efficient approach for uncertainty quantification in the multidisciplinary analysis of a RLV, which has a 
mixture of aleatory (inherent) and epistemic input uncertainties. Uncertainty quantification will be 
performed on various output variables of interest for an RLV system such as the weight and vehicle cross-
range. For the propagation of mixed (aleatory-epistemic) uncertainty, Second-Order Probability Theory 
utilizing Point-Collocation Non-Intrusive Polynomial Chaos (NIPC)1 will be used.2-3 In general, the NIPC 
methods, which are based on the spectral representation of uncertainty, are computationally more efficient 
than traditional Monte Carlo methods for moderate number of uncertain variables and can give highly 
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accurate estimates of various uncertainty metrics. In addition, they treat the deterministic model (e.g, an 
RLV system) as a black box and the uncertainty information in the output is approximated with a 
polynomial expansion, which is constructed using a number of deterministic solutions, each 
corresponding to a sample point in random space. Therefore, the NIPC methods become a perfect 
candidate for the uncertainty quantification in the numerical solutions, which are computationally 
expensive and complex.  
 

Previously, M4 Engineering developed the Multidisciplinary Optimization Object Library (MOOL) as 
part of a phase II SBIR effort funded by NASA Glenn Research Center. An object-oriented 
Multidisciplinary Analysis Optimization (MDAO) framework is an automated analysis, optimization, and 
virtual test system that allows (1) consideration of interactions between disciplines during analysis, (2) 
automated execution of multiple analysis codes on different computers, (3) incorporation of test data to 
improve accuracy of analysis models, and (4) optimization of vehicle parameters to achieve superior 
performance. In the MOOL project, M4 developed a suite of common MDAO objects that can be used in 
multiple framework environments to handle common tasks encountered in integration of multidisciplinary 
analysis and optimization problems.  Specifically, as an example application, a high-alpha RLV system 
was integrated and analyzed. In the current study, the same MOOL high-alpha RLV system will be 
implemented for uncertainty quantification (UQ) analysis. 

 
Currently, M4 Engineering and Missouri S&T have partnered to develop an UQ framework. This 

framework is built upon an Uncertainty Module previously developed by M4 Engineering.  One of the 
key objectives of this project is to implement the Non-Intrusive Polynomial Chaos (NIPC) expansion 
methods within the framework.  This framework was developed in Python language13 and primarily 
serves as an outer analysis layer. The utility of this framework is through the efficient application of NIPC 
methods to any user-specified system, which can be executed from a command line.  
 
 In the following section, a brief description of the various types of uncertainties found in complex 
numerical simulations is given. In Section III, a brief overview on the theory behind Point-Collocation 
Non-Intrusive Polynomial Chaos will be given. Next in Section IV, an efficient approach to propagate 
mixed aleatory and epistemic uncertainties through a simulation code using NIPC and Second-Order 
Probability will be outlined. In Section V, the details of the uncertainty quantification framework will be 
given. In Section VI, the MOOL RLV system will be described in detail along with preliminary 
uncertainty quantification results. Finally in Section VII, the conclusions and the main objectives of our 
future work are given.    

 
II.  Types of Uncertainties in Computational Simulations 

 
 As described in Oberkampf et. al.,4 there can be three different types of uncertainty and error in a 
computational simulation: (1) aleatory uncertainty, (2) epistemic uncertainty, and (3) numerical error. The 
term aleatory uncertainty describes the inherent variation of a physical system. Such variation is due to 
the random nature of input data and can be mathematically represented by a probability density function if 
substantial experimental data are available for estimating the distribution (uniform, normal, etc.). The 
variation of the free-stream velocity or manufacturing tolerances can be given as examples for aleatory 
uncertainty in a stochastic external aerodynamics problem. The aleatory uncertainty is sometimes referred 
as irreducible uncertainty due to its nature. 
 
 Epistemic uncertainty in a non-deterministic system originates due to ignorance, lack of knowledge, or 
incomplete information (such as the values of transport quantities in high temperature hypersonic flow 
simulations). The key feature of this definition is that the fundamental cause is incomplete information of 
some characteristics of the system. As a result, an increase in knowledge or information can lead to a 
decrease in the epistemic uncertainty. Therefore, epistemic uncertainty is referred to as reducible 
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uncertainty. As shown by Oberkampf and Helton,5 modeling of epistemic uncertainties with probabilistic 
approaches may lead to inaccurate predictions in the amount of uncertainty in the responses due to the 
lack of information on the characterization of uncertainty as probabilistic. One approach to characterize 
the epistemic uncertain variables is to use intervals. The upper and lower bounds on the uncertain variable 
can be prescribed using either limited experimental data or expert judgment.  
 
 Numerical error is defined as a recognizable deficiency in any phase or activity of modeling and 
simulation that is not due to the lack of knowledge. If errors cannot be well-characterized, then they must 
be treated as part of the epistemic uncertainties. The discretization error in spatial or temporal domain 
originating from the numerical solution of partial differential equations that describes a physical model in 
a discretized computational space (mesh) can be given as an example of numerical uncertainty. 
 

III.  The Point-Collocation NIPC 
 
The polynomial chaos is a stochastic method, which is based on the spectral representation of the 

uncertainty. An important aspect of spectral representation of uncertainty is that one may decompose a 
random function (or variable) into separable deterministic and stochastic components. For example, for 
any random variable (i.e., α∗) such as velocity, density or pressure in a stochastic fluid dynamics 
problem, we can write, 

  

α∗(
� 

x ,
� 

ξ ) = α i(
i= 0

P

∑
� 

x ) Ψi(
� 

ξ ),                                                                     

where 
  

α i(
� 

x ) is the deterministic component and 
  

Ψi(
� 

ξ ) is the random basis function corresponding to the 

ith mode. Here we assume α∗ to be a function of deterministic independent variable vector 
  

�

x  and the n-

dimensional random variable vector 
  

� 

ξ = (ξ1,...,ξn ), which has a specific probability distribution. The 
discrete sum is taken over the number of output modes, 

P +1= (n + p)!
n! p!

, 

which is a function of the order of polynomial chaos (p) and the number of random dimensions (n). The 
basis function ideally takes the form of multi-dimensional Hermite Polynomial to span the n-dimensional 
random space when the input uncertainty is Gaussian (unbounded), which was first used by Wiener8 in 
his original work of polynomial chaos. Legendre (Jacobi) and Laguerre polynomials are optimal basis 
functions for bounded (uniform) and semi-bounded (exponential) input uncertainty distributions 
respectively in terms of the convergence of the statistics. Different basis functions can be used with 
different input uncertainty distributions (See Xiu and Karniadakis9 for a detailed description), however 
the convergence may be affected depending on the basis function used. The detailed information on 
polynomial chaos expansions can be found in Walters and Huyse10 and Hosder et. al.1 

 

To model the uncertainty propagation in computational simulations via polynomial chaos with the 
intrusive approach, all dependent variables and random parameters in the governing equations are 
replaced with their polynomial chaos expansions. Taking the inner product of the equations, (or projecting 
each equation onto ith basis) yield P + 1 times the number of deterministic equations which can be solved 
by the same numerical methods applied to the original deterministic system. Although straightforward in 
theory, an intrusive formulation for complex problems can be relatively difficult, expensive, and time 
consuming to implement. To overcome such inconveniences associated with the intrusive approach, non-
intrusive polynomial chaos formulations have been considered for uncertainty propagation. 

(1) 

(2) 
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The collocation based NIPC method starts with replacing the uncertain variables of interest with their 

polynomial expansions given by Equation 1. Then, P+1 vectors (
  

� 

ξ i = ξ1,ξ2,...,ξn{ }
k
, k = 0,1,2,...,P) are 

chosen in random space for a given PC expansion with P +1 modes and the deterministic code is 
evaluated at these points. With the left hand side of Equation 1 known from the solutions of deterministic 
evaluations at the chosen random points, a linear system of equations can be obtained: 
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The spectral modes (αk) of the random variable α * are obtained by solving the linear system of 

equations given above. Using these, mean (µα*) and the variance (σα *
2 ) of the solution can be obtained by 

  

µα* = α0

σα*

2 = α i
2 Ψi

2(
� 

ξ )
i=1

P

∑
 

The solution of the linear problem given by Equation 3 requires P +1 deterministic function evaluations. 
If more than P +1 samples are chosen, then the over-determined system of equations can be solved using 
the Least Squares method. Hosder et. al.11 investigated this option by increasing the number of collocation 
points in a systematic way through the introduction of a parameter np defined as 

np = number of samples

P +1
. 

In the solution of stochastic model problems with multiple uncertain variables, they have used np = 1, 2, 3, 
and 4 to study the effect of the number of collocation points (samples) on the accuracy of the polynomial 
chaos expansions. Their results showed that using a number of collocation points that is twice more than 
the minimum number required (np=2) gives a better approximation to the statistics at each polynomial 
degree. This improvement can be related to the increase of the accuracy of the polynomial coefficients 
due to the use of more information (collocation points) in their calculation. The results of the stochastic 
model problems also indicated that for problems with multiple random variables, improving the accuracy 
of polynomial chaos coefficients in NIPC approaches may reduce the computational expense by 
achieving the same accuracy level with a lower order polynomial expansion. 

IV.  Mixed Aleatory-Epistemic Uncertainty Propagation 
 
In this study, Second-Order Probability2-3 is utilized to propagate mixed (aleatory and epistemic) 

uncertainty through multidisciplinary analysis framework. Second-Order Probability uses an inner loop 
and an outer sampling loop as described in Figure 1. In the outer loop, a specific value for the epistemic 
variable is prescribed and then passed down to the inner loop. Any traditional aleatory uncertainty method 
may then be used to perform aleatory uncertainty analysis in the inner loop for the specified value of the 
epistemic uncertain variable. The Second-Order Probability will give interval bounds for the output 
variable of interest at different probability levels. Each iteration of the outer loop will produce a 

(3) 

(4) 

(5) 
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cumulative distribution function (CDF) based on the aleatory uncertainty analysis in the inner loop. Thus, 
if there are 100 samples in the outer loop, then 100 different CDF curves will be generated. One major 
advantage of Second-Order Probability is that it is easy to separate and identify the aleatory and epistemic 
uncertainties. On the other hand, the two sampling loops can make this method computationally 
expensive especially if traditional sampling techniques, such as Monte Carlo, are used for the uncertainty 
propagation.  
 

The current study utilizes an efficient approach for the propagation of mixed uncertainties using the 
framework based on Second-Order Probability. With this approach, the stochastic response is represented 
with a polynomial chaos expansion on both epistemic and aleatoric variables. In this study, Point-
Collocation NIPC is used to construct the stochastic response surface although other NIPC methods (i.e., 
quadrature or sampling based) can be also used. The optimal basis functions are used for the aleatoric 
variables whereas Legendre polynomials are used for the epistemic uncertain variables. It should be noted 
that the use of Legendre polynomials should not imply a uniform probability assignment to the epistemic 
variables. This choice is made due to the bounded nature of epistemic uncertain variables. Once the 
stochastic response surface is formed, at fixed values of epistemic uncertain variables, the stochastic 
response values can be evaluated for a large number of samples randomly produced based on the 
probability distributions of the aleatoric input uncertainties (inner loop of Second-Order Probability). This 
procedure will produce a single cumulative distribution function. By repeating the inner loop procedure 
for a large number of epistemic uncertain variables sampled from their corresponding intervals (outer 
loop of Second-Order Probability), a population of cumulative distribution functions can be obtained 
which can be used to calculate the bounds of the stochastic response at different probability levels. Due to 
the analytical nature (polynomial) of the stochastic response, the described procedure will be 
computationally efficient, especially compared to the approaches based on direct MC sampling which 
require a large number of deterministic simulations. 

 
 

 
Figure 1. Schematic of second-order probability. 

V. Uncertainty Quantification Framework 
 

A.   Overview  
The UQ Framework was developed as a Python class within the M4.Uncertainty module.  This allows the 
framework to have access to the various UQ techniques, algorithms, and visualization schemes existing 
within the M4.Uncertainty module.  The framework was designed to serve as a generalized outer analysis 
layer for a given user-specified system (see Figure 2). 
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This approach allows the framework to analyze and interact with the inputs and outputs of any user-
specified system that can be executed from a command line.  The UQ Framework consists of three main 
methods: 

1. preProcess(): 
o Generates sample values for input random variables and writes them to the Framework 

OutputFolder. 
2. systemExecute(): 

o Executes the user-specified system by calling it from the command line. 
3. postProcess(): 

o Performs the UQ analysis on the system output data. 
 

Framework.py

User-Specified System

M4.Uncertainty Module

System 

Inputs

F
ra

m
e

w
o

rk
 

In
p

u
ts

• NIPC Method

• Monte Carlo Method

• Visualization Techniques

• preProcess()

• systemExecute()

• postProcess()

System 

Outputs

F
ra

m
e

w
o

rk
 

O
u

tp
u

ts

 

Figure 2. Overview of UQ Framework 

 
B.   Framework Operation 
The UQ Framework operation process can be summarized by the following: 

• Begin preProcess() 
o Generate and write required number of sample values for input random variables to a file 

to be used by systemExecute() 
o Organize and write UQ method (i.e. NIPC) input data to a file to be used by postProcess() 

• Generate output values for each sample 
o For each sample value, wrap the user-specified system inputs 
o Begin systemExecute() 
o Collect, organize, and write comma-separated, column-formatted output values from 

user-specified system outputs to a file 
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• Begin postProcess() 
o Invoke UQ post process method, 

� For NIPC method, solve matrix equation for alpha coefficients for each output to 
determine the mean 

� Compute Gauss-quadrature to determine variance and standard deviation for 
output variables of interest 

� Write cumulative distribution function (CDF) and probability density function 
(PDF) plot data to a file in UQ Framework output folder 

• Generate CDF and PDF plots 
o Using previously generated plot data, create and save PNG files for each output variable 

of interest 
 
Figure 3 shows a schematic of this process. 
 

Begin 

preProcess()

Generate sample 

values
Begin 

postProcess()

Wrap system 

inputs

Run system 

with sample 

list value i

Get system 

outputs

For i = 1 : num_samples

i == num_samples?NO YES

Calculate alpha 

coefficients

Compute Gauss-

quadrature

Generate CDF 

and PDF plots

NIPC 

Method

 

Figure 3. Framework.py Process Overview (shown for NIPC method) 

 
C.  Framework Capabilities – NIPC Techniques 
The postProcess() section of the UQ Framework applies the NIPC methodologies to the output data 
generated from the user-specified (black box) system.  This procedure can be summarized by the 
following bulleted list: 
 
postProcess() 

• Pure Aleatory Analysis 
o NIPC Methods 

� Regression 
• Latin Hypercube Sampling 

� Quadrature 
• Quadrature Points 

o Calculate Expansion Coefficients 
o Calculate Mean, Standard Deviation, PDF, CDF, etc. 

• Mixed Aleatory-Epistemic Analysis (Second-Order Probability) 



 
American Institute of Aeronautics and Astronautics 

 

8

o NIPC Response Surface Formulation 
� Regression 

• Latin Hypercube Sampling 
� Quadrature 

• Quadrature Points 
o Calculate Expansion Coefficients 
o Formulate Stochastic Response Surface 
o Apply Response Surface to Second-Order Probability 

 
For clarity, Figure 4 was included to illustrate this process. 

Calculate Mean, 

Standard Deviation, 

PDF, CDF, etc.

postProcess()

Pure Aleatory Inputs?
Yes

NIPC Methods

Regression Quadrature

Latin Hypercube 

Sampling

Quadrature 

Points

Calculate Expansion 

Coefficients

Second-Order 

Probability

No

NIPC Response 

Surface Formulation

Regression Quadrature

Latin Hypercube 

Sampling

Quadrature 

Points

Calculate Expansion 

Coefficients

Formulate Stochastic 

Response Surface

Apply Response Surface to 

Second-Order Probability  

Figure 4. Flowchart for NIPC Methodologies with UQ Framework 

VI.  UQ of MOOL Reusable Launch Vehicle System 
 
A.   Integrated Spacecraft System – RLV Demonstration Application  
The MOOL RLV analysis framework application includes Modules (objects) to handle the disciplines of 
Geometry, Aerodynamics, Trajectory, Thermal, Structural Optimization, Mission Performance, and 
Optimization.  These modules were implemented using off-the-shelf software in most cases, with some 
custom code developed as required.  The configuration used in this hypersonic process is a vehicle 
configuration from the Air Force High Alpha RLV Aerodynamic Configuration Development Program.  
The purpose of the development program was to perform tests and validate the CFD codes used for 
predicting airflow around the six different vehicle configurations being researched.  The RLV 
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configuration used in this MDAO process is shown in Figure 5. This process is discussed in detail below.  
The implemented RLV process seamlessly handles the passing of data between modules.  Ultimately, this 
allows system level optimization and trade studies to be performed.   

 

Figure 5. RLV Vehicle Configuration F. 

The overall process for MDAO of the RLV is shown schematically in Figure 6.  The process is shown 
in Design Structure Matrix format, in which the inputs to a module are shown in the same column as the 
module, and the outputs are shown on the same row (with the exception of the far left column, which 
represents overall process inputs).  For example the FEM Mesh (on the same row as Geometry and the 
same column as Structural) is generated by the Geometry module and used by the Structural module.  The 
modules are listed in execution order along the diagonal, starting with geometry and ending with mission 
performance.  Only the most important interactions are shown. 

  

 

Figure 6. RLV design structure matrix. 

 

B.   Modules Included in MOOL RLV System 

The following subsystem modules were incorporated into the RLV system model: 
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1. Geometry - The Geometry Module is responsible for morphing analytical meshes for use by the 
MOOL system. 

2. Aerodynamics - The Aerodynamics Module is responsible for calculating aerodynamics (in the 
form of an aerodynamic database) for a reusable launch vehicle configuration. 

3. Trajectory  – The Trajectory Module is responsible for determining the optimum trajectory for 
three types of launch vehicle trajectories.  These include ascent, descent, and boost/flyback.   

4. Thermal – The Thermal Module is responsible for calculating the temperature response of all 
structural components subjected to aero heating and to determine the necessary material 
thicknesses for the thermal protection system (TPS). 

5. Structural  - The Structural Module is responsible for analyzing a user-supplied structural model 
and optimizing the structural sizing to minimize the structural weight.   

6. Mission Performance - The Mission Module provides the system-level integration of the results 
from the steady aerodynamics, propulsion/power, and structural optimization modules to 
evaluate the overall performance of the vehicle.   

7. Optimization  – The Optimization Module is responsible for building tools for sample point 
generation by using Design of Experiments (DOE), creating metamodels (surrogate models) for 
multi-fidelity correction functions, and performing design optimization. 

 

 The MOOL RLV system serves to provide system-level performance analysis of a particular RLV 
design configuration. System-level design and optimization can be carried out fairly effortlessly using this 
analysis framework.   

C.   Description of the Stochastic Problem 
The MOOL RLV system has a large number of input parameters. Many of these parameters are 
propagated through multiple subsystem modules and can have a significant impact on the overall output 
of the system. Uncertainties (inherent and epistemic) can also be associated with some of the input 
parameters which can greatly affect the output of the MOOL RLV system analysis. For the demonstration 
problem of applying the efficient uncertainty quantification techniques to an integrated space system, 
there were a total of three input uncertainties selected. Two inherent (aleatory) parameters and one 
epistemic (model form) uncertainty were chosen. The altitude of the initial re-entry point was selected as 
one inherent uncertainty. The re-entry altitude, which can be thought of as an initial condition, was 
selected as an uncertainty source because a small deviation from the nominal altitude can greatly affect 
the overall trajectory of the re-entry vehicle which also gets propagated through many of the subsystem 
modules. The altitude was assumed to have a normal distribution with a mean of 295,000 feet and a 
standard deviation of 1,666.67 feet. The second inherent uncertainty selected was the re-entry angle of 
attack (α). The parameter α was assumed to have a normal distribution with a mean of 60° and a standard 
deviation of 1.667°. The third uncertain parameter was chosen to be the Young’s Modulus. The RLV 
system is a futuristic concept vehicle, and so there is some level of uncertainty in the technological 
advances in structural materials which will be used to construct these types of vehicles. Therefore, the 
structural property, Young’s Modulus, was treated as an epistemic uncertainty to account for the unknown 
material that will be used in future manufacturing of the RLV. The lower and upper bounds for the 
Young’s Modulus was selected as 25,000,000 psi and 29,600,000 psi, respectively. An overview of the 
input uncertainties is shown in Table 1.  
 

The mixed uncertainties were propagated through the MOOL RLV system to a total of four output 
variables which are of interest in the design of a RLV system. The four output variables analyzed were 
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the maximum range, maximum cross range, maximum dynamic pressure (q), and the takeoff gross weight 
(TOGW).    

Table 1. Uncertainty ranges for the parameters used in the RLV problem. 

Uncertain Parameter Uncertainty Type Uncertainty Range 

Altitude Aleatory (normal) µ = 295,000 ft, σ = 1,666.67 ft 
α Aleatory (normal) µ = 60°, σ = 1.6667° 

Young's Modulus Epistemic [25,000,000 psi, 29,600,000 psi] 

D.   Mixed Uncertainty Quantification for the RLV A pplication 
The approach described previously was followed to propagate the mixed (aleatory and epistemic) 
uncertainty through the RLV application problem. For this particular case, Point-Collocation NIPC with 
an oversampling ratio of two was utilized to formulate the response surface which was implemented into 
the sampling loops of Second-Order Probability. Convergence studies were carried out and it was found 
that a 4th order polynomial chaos was sufficient for convergence of the NIPC response surface. This 
required a total of 70 MOOL RLV system evaluations (Equation 2). A Latin Hypercube Sample (LHS) of 
size 1,000 was used for the outer loop (epistemic) sampling. For each iteration of the outer loop in 
Second-Order Probability, the NIPC response surface was utilized for the inner loop (aleatory) UQ, with 
1,000 samples, which produced a single cumulative distribution function (CDF). The overall Second-
Order Probability analysis produced 1,000 CDF curves, which were then evaluated to find the upper and 
the lower bounds of the output variables of interest at various probability levels. 
 

The interval bounds at various probability levels for each of the four output variables of interest 
(maximum range, maximum cross range, maximum dynamic pressure, and TOGW) are shown in Table 2. 
The interval range for maximum range, maximum cross range, and maximum dynamic pressure (q) are 
much smaller compared to the interval range of TOGW. This result implies that the epistemic uncertainty 
(Young’s Modulus) has the largest impact on TOGW. However, the maximum range, maximum cross 
range, and maximum dynamic pressure have a significant amount of uncertainty due to the aleatory 
(inherent) input uncertainties. There is a relatively large interval range for TOGW at all probability levels. 
This result directly implies that the Young’s Modulus (epistemic uncertainty) has a significant 
contribution to the uncertainty in the vehicle’s TOGW. Uncertainty in TOGW is important from a design 
point of view because a vehicle’s takeoff weight directly affects the vehicle’s capacity for carrying 
payload, fuel, etc.   

Table 2. Interval bounds for the output variables of interest at various probability levels. 

Probability  
Level 

Maximum Range 
(miles) 

Maximum Cross 
Range (miles) 

Maximum q 
(psf) 

Maximum TOGW 
(lbs) 

P = 0.05 [985.33, 987.65] [1158.36, 1160.52] [126.19, 146.59] [26304.16, 28421.77] 

P = 0.2 [988.17, 988.82] [1163.20, 1164.10] [174.83, 177.30] [27727.63, 29523.33] 

P = 0.4 [989.15, 990.17] [1163.91, 1164.33] [194.67, 195.97] [28045.59, 29915.57] 

P = 0.6 [989.91, 991.26] [1164.34, 1164.64] [206.68, 207.97] [28270.58, 30287.93] 

P = 0.8 [990.92, 992.00] [1164.57, 1165.47] [215.50, 217.97] [28639.11, 30600.30] 

P = 0.95 [994.74, 995.35] [1164.80, 1166.65] [224.13, 234.68] [30271.89, 33030.52] 

 
The results of the mixed (aleatory-epistemic) uncertainty quantification can be used in the assessment 

of the robustness or the reliability of a given vehicle. For example, in a robust design study where aleatory 
and epistemic uncertainties are present, one possible approach would be to minimize the variation 
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(interval) at the mean probability level (p=50%). By shrinking this interval, the design sensitivity due to 
the epistemic uncertainties would be reduced. One method for reducing the interval is by gaining a better 
fundamental understanding of the physics associated with the epistemic uncertainty, and developing more 
accurate physical models. Alternatively, the designs that are robust to the uncertainty in physical models 
can be developed. In a reliability-based assessment, a large interval (high epistemic uncertainty) at a 
specified probability level may indicate a larger design failure region for a given vehicle configuration 
and flight condition, which has to be addressed again with a stochastic design framework. 

 
The demonstration problem shown here has successfully displayed the efficiency of the developed 

uncertainty quantification methods. In the current problem, all relevant results were obtained with 70 
evaluations of the MOOL RLV system. If traditional and existing second-order probability methods were 
used to achieve these same results, it would require a total of 106 MOOL RLV system evaluations. A 
conservative estimate of the runtime of one MOOL RLV evaluation is approximately five hours. Using 
this estimate, the current method of second-order probability with the NIPC response surface 
implementation took approximately 15 days to complete. If the traditional/existing methods were used 
then it would take approximately 570 years to complete all the simulations. The time requirement for 
propagating mixed uncertainties using the traditional methods is obviously not feasible. However, the 
second-order probability with the NIPC response surface formulation makes it feasible to propagate 
mixed uncertainties in a relatively reasonable amount of time.  

VII.  Conclusions and Future Work 
The development of an efficient uncertainty quantification framework with application to a complex 

reusable launch vehicle system has been presented.  The UQ capabilities and layout of the developed 
framework have been discussed.  Specifically, the pure-aleatory NIPC and mixed (aleatory-epistemic) 
second-order probability methods have been detailed and subsequently applied to an RLV system.  The 
probability levels were given for four output variables of interest from the RLV system in which three 
input uncertainties were propagated.  The epistemic uncertainty was shown to have the largest impact on 
the TOGW.  Additionally, the NIPC methods utilized within the developed UQ Framework have proven 
to be efficient relative to existing/traditional techniques as seen in the RLV demonstration problem. 

 
The UQ Framework being developed is much a work in progress. A key technical objective for the 

future effort is the refinement of NIPC methods to further improve their computational efficiency and 
accuracy for mixed uncertainty propagation in spacecraft system models.  Additionally, a non-linear 
global sensitivity analysis capability will be integrated to the uncertainty quantification framework to rank 
the importance of each uncertainty source and to reduce the number of dimensions in uncertainty space.  
The development of an adaptive uncertainty quantification methodology for problems with a large 
number of uncertain variables which will successively utilize different NIPC methods depending on the 
size of the problem along with the global sensitivity information.  Next, a general Quantification of 
Margins and Uncertainties methodology will be integrated to the uncertainty quantification framework 
which will include (1) the consideration of both aleatory and epistemic forms in the calculation 
uncertainty and margins, (2) the utilization of response surfaces based on NIPC for the propagation of 
uncertainty through each sub-system and overall system, and (3) robust measures to describe the sub-
system and overall system safety/reliability/robustness which can be used in decision-making and mission 
planning.  These capabilities will be available for usage in an advanced GUI also to be developed.  Lastly, 
integration of the UQ framework with advanced MDAO software will allow for UQ analysis of an 
enormous amount of already-developed systems. 
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